OWLV2 FOR MOORE/STANITSKI'S CHEMISTRY:
OWLV2 FOR MOORE/STANITSKI'S CHEMISTRY:
5th Edition
ISBN: 9781285460369
Author: STANITSKI
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 16, Problem 61QRT

(a)

Interpretation Introduction

Interpretation:

The ΔrG° value for CO(g)+2H2(g)CH3OH(l) at 2000K has to be calculated.

Concept Introduction:

The Gibbs free energy of a system is defined as the enthalpy of the system minus the product of the temperature times the entropy of the system.  The Gibbs free energy of the system is a state function as it is defined in terms of thermodynamic properties that are state functions.

(a)

Expert Solution
Check Mark

Answer to Problem 61QRT

The ΔrG° value for CO(g)+2H2(g)CH3OH(l) at 2000K is 536.3kJ_.

Explanation of Solution

The given reaction is shown below.

  CO(g)+2H2(g)CH3OH(l)

The formula to calculate ΔrG° is shown below.

    ΔrG°=ΔrH°TΔrS°        (1)

Where,

  • ΔrG° is the change in standard Gibbs free energy of reaction.
  • ΔrH° is the change in standard enthalpy of reaction.
  • ΔrS° is the change in standard entropy of reaction.
  • T is the temperature.

The value of ΔrH° is calculated by the formula shown below.

    ΔrH°=nProductsΔfH°(Products)nReactantsΔfH°(Reactants)        (2)

Where,

  • ΔfH° is the change in standard enthalpy of formation.
  • nReactants is the number of moles of reactants.
  • nProducts is the number of moles of products.

The value of ΔfH° for CO(g), H2(g) and CH3OH(l) is 110.525kJ/mol,0kJ/mol and 238.66kJ/mol respectively.

Substitute the values in equation (2) as shown below.

    ΔrH°=(nCH3OH(l)×ΔfH°(CH3OH(l))(nCO(g)×ΔfH°(CO(g))+nH2(g)×ΔfH°(H2(g))))=1×(238.66kJ/mol)(1×(110.525kJ/mol)+2×(0kJ/mol))=128.135kJ

The value of ΔrS° is calculated by the formula shown below.

    ΔrS°=nProductsΔfS°(Products)nReactantsΔfS°(Reactants)        (3)

Where,

  • ΔfS° is the change in standard entropy of formation.
  • nReactants is the number of moles of reactants.
  • nProducts is the number of moles of products.

The value of ΔfS° for CO(g), H2(g) and CH3OH(l) is 197.674J/molK,130.684J/molK and 126.8J/molK respectively.

Substitute the values in equation (3) as shown below.

    ΔrS°=(nCH3OH(l)×ΔfS°(CH3OH(l))(nCO(g)×ΔfS°(CO(g))+nH2(g)×ΔfS°(H2(g))))=1×(126.8J/molK)(1×(197.674J/molK)+2×(130.684J/molK))=126.8J/K(459.042J/K)=332.242J/K

Substitute the values of ΔrH°, ΔrS° and T in equation (1).

    ΔrG°=ΔrH°TΔrS°=128.135kJ((2000K)×(332.242J/K))=128.135×103J+664484J1kJ=103J=536349J

The value of ΔrG° in kJ is written as follows.

    1J=103kJ536349J=536349×103kJ=536.3kJ_

(b)

Interpretation Introduction

Interpretation:

The ΔrG° value for 2Fe2O3(s)+3C(s,graphite)4Fe(s)+3CO2(g) at 2000K has to be calculated

Concept Introduction:

Refer to part (a).

(b)

Expert Solution
Check Mark

Answer to Problem 61QRT

The ΔrG° value for 2Fe2O3(s)+3C(s,graphite)4Fe(s)+3CO2(g) at 2000K is 648.8kJ_.

Explanation of Solution

The given reaction is shown below.

  2Fe2O3(s)+3C(s,graphite)4Fe(s)+3CO2(g)

The value of ΔfH° for Fe2O3(s), C(s,graphite), Fe(s) and CO2(g) is 824.2kJ/mol,0kJ/mol,0kJ/mol and 393.509kJ/mol respectively.

Substitute the values in equation (2) as shown below.

    ΔrH°=((nFe(s)×ΔfH°(Fe(s))+nCO2(g)×ΔfH°(CO2(g)))(nFe2O3(s)×ΔfH°(Fe2O3(s))+nC(s,graphite)×ΔfH°(C(s,graphite))))=(4×(0)+3×(393.509kJ/mol))(2×(824.2kJ/mol)+3×(0kJ/mol))=1180.527kJ+1648.4kJ=467.873kJ

The value of ΔfS° for Fe2O3(s), C(s,graphite), Fe(s) and CO2(g) is 87.4J/molK,5.74J/molK,27.28J/molK and 213.74J/molK respectively.

Substitute the values in equation (3) as shown below.

    ΔrS°=((nFe(s)×ΔfS°(Fe(s))+nCO2(g)×ΔfS°(CO2(g)))(nFe2O3(s)×ΔfS°(Fe2O3(s))+nC(s,graphite)×ΔfS°(C(s,graphite))))=((4×(27.28J/molK)+3×(213.74J/molK))(2×(87.4J/molK)+3×(5.74J/molK)))=(109.12J/K+641.22J/K)(174.8J/K+17.22J/K)=558.32J/K

Substitute the values of ΔrH°, ΔrS° and T in equation (1).

    ΔrG°=ΔrH°TΔrS°=467.873kJ((2000K)×(558.32J/K))=467.873×103J1116640J1kJ=103J=648767J

The value of ΔrG° in kJ is written as follows.

    1J=103kJ648767J=648767J×103kJ=648.8kJ_

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Do the Lone Pairs get added bc its valence e's are a total of 6 for oxygen and that completes it or due to other reasons. How do we know the particular indication of such.
NGLISH b) Identify the bonds present in the molecule drawn (s) above. (break) State the function of the following equipments found in laboratory. Omka) a) Gas mask b) Fire extinguisher c) Safety glasses 4. 60cm³ of oxygen gas diffused through a porous hole in 50 seconds. How long w 80cm³ of sulphur(IV) oxide to diffuse through the same hole under the same conditions (S-32.0.0-16.0) (3 m 5. In an experiment, a piece of magnesium ribbon was cleaned with steel w clean magnesium ribbon was placed in a crucible and completely burnt in oxy cooling the product weighed 4.0g a) Explain why it is necessary to clean magnesium ribbon. Masterclass Holiday assignmen PB 2
Hi!! Please provide a solution that is handwritten. Ensure all figures, reaction mechanisms (with arrows and lone pairs please!!), and structures are clearly drawn to illustrate the synthesis of the product as per the standards of a third year organic chemistry course. ****the solution must include all steps, mechanisms, and intermediate structures as required. Please hand-draw the mechanisms and structures to support your explanation. Don’t give me AI-generated diagrams or text-based explanations, no wordy explanations on how to draw the structures I need help with the exact mechanism hand drawn by you!!!    I am reposting this—ensure all parts of the question are straightforward and clear or please let another expert handle it thanks!!

Chapter 16 Solutions

OWLV2 FOR MOORE/STANITSKI'S CHEMISTRY:

Ch. 16.5 - Prob. 16.8ECh. 16.6 - Prob. 16.9CECh. 16.6 - In the text we concluded that the reaction to...Ch. 16.6 - Prob. 16.10CECh. 16.6 - Prob. 16.6PSPCh. 16.7 - Prob. 16.7PSPCh. 16.7 - Prob. 16.8PSPCh. 16.7 - Prob. 16.9PSPCh. 16.8 - Predict whether each reaction is reactant-favored...Ch. 16.9 - Prob. 16.13ECh. 16.9 - Prob. 16.11PSPCh. 16.9 - Prob. 16.12PSPCh. 16.9 - Prob. 16.14ECh. 16.11 - All of these substances are stable with respect to...Ch. 16 - Define the terms product-favored System and...Ch. 16 - What are the two ways that a final chemical state...Ch. 16 - Define the term entropy, and give an example of a...Ch. 16 - Prob. 4QRTCh. 16 - Prob. 5QRTCh. 16 - Prob. 6QRTCh. 16 - Prob. 7QRTCh. 16 - Prob. 8QRTCh. 16 - Prob. 9QRTCh. 16 - Prob. 10QRTCh. 16 - Prob. 11QRTCh. 16 - Prob. 12QRTCh. 16 - Prob. 13QRTCh. 16 - Prob. 14QRTCh. 16 - Prob. 15QRTCh. 16 - Prob. 16QRTCh. 16 - Prob. 17QRTCh. 16 - Suppose you have four identical molecules labeled...Ch. 16 - For each process, tell whether the entropy change...Ch. 16 - Prob. 20QRTCh. 16 - For each situation described in Question 13,...Ch. 16 - Prob. 22QRTCh. 16 - Prob. 23QRTCh. 16 - Prob. 24QRTCh. 16 - Prob. 25QRTCh. 16 - Prob. 26QRTCh. 16 - Prob. 27QRTCh. 16 - Prob. 28QRTCh. 16 - Prob. 29QRTCh. 16 - Prob. 30QRTCh. 16 - Prob. 31QRTCh. 16 - Diethyl ether, (C2H5)2O, was once used as an...Ch. 16 - Calculate rS for each substance when the quantity...Ch. 16 - Prob. 34QRTCh. 16 - Prob. 35QRTCh. 16 - Check your predictions in Question 28 by...Ch. 16 - Prob. 37QRTCh. 16 - Prob. 38QRTCh. 16 - Prob. 39QRTCh. 16 - Prob. 40QRTCh. 16 - Prob. 41QRTCh. 16 - Prob. 42QRTCh. 16 - Prob. 43QRTCh. 16 - Prob. 44QRTCh. 16 - Prob. 45QRTCh. 16 - Prob. 46QRTCh. 16 - Hydrogen bums in air with considerable heat...Ch. 16 - Prob. 48QRTCh. 16 - Prob. 49QRTCh. 16 - Prob. 50QRTCh. 16 - Prob. 51QRTCh. 16 - The reaction of magnesium with water can be used...Ch. 16 - Prob. 53QRTCh. 16 - Prob. 54QRTCh. 16 - Prob. 55QRTCh. 16 - Prob. 56QRTCh. 16 - Prob. 57QRTCh. 16 - Prob. 58QRTCh. 16 - Prob. 59QRTCh. 16 - Prob. 60QRTCh. 16 - Prob. 61QRTCh. 16 - Estimate ΔrG° at 2000. K for each reaction in...Ch. 16 - Prob. 63QRTCh. 16 - Some metal oxides, such as lead(II) oxide, can be...Ch. 16 - Prob. 65QRTCh. 16 - Prob. 66QRTCh. 16 - Use data from Appendix J to obtain the equilibrium...Ch. 16 - Prob. 68QRTCh. 16 - Prob. 69QRTCh. 16 - Use the data in Appendix J to calculate rG andKPat...Ch. 16 - Prob. 71QRTCh. 16 - Prob. 72QRTCh. 16 - Prob. 73QRTCh. 16 - Prob. 74QRTCh. 16 - Prob. 75QRTCh. 16 - Prob. 76QRTCh. 16 - Prob. 77QRTCh. 16 - Prob. 78QRTCh. 16 - Prob. 79QRTCh. 16 - The molecular structure shown is of one form of...Ch. 16 - Another step in the metabolism of glucose, which...Ch. 16 - In muscle cells under the condition of vigorous...Ch. 16 - The biological oxidation of ethanol, C2H5OH, is...Ch. 16 - Prob. 86QRTCh. 16 - For one day, keep a log of all the activities you...Ch. 16 - Billions of pounds of acetic acid are made each...Ch. 16 - Determine the standard Gibbs free energy change,...Ch. 16 - There are millions of organic compounds known, and...Ch. 16 - Actually, the carbon in CO2(g) is...Ch. 16 - The standard molar entropy of methanol vapor,...Ch. 16 - The standard molar entropy of iodine vapor, I2(g),...Ch. 16 - Prob. 94QRTCh. 16 - Prob. 96QRTCh. 16 - Prob. 97QRTCh. 16 - Prob. 98QRTCh. 16 - Prob. 99QRTCh. 16 - Prob. 100QRTCh. 16 - Appendix J lists standard molar entropies S, not...Ch. 16 - When calculating rSfromSvalues, it is necessary to...Ch. 16 - Prob. 103QRTCh. 16 - Explain how the entropy of the universe increases...Ch. 16 - Prob. 105QRTCh. 16 - Prob. 106QRTCh. 16 - Prob. 107QRTCh. 16 - Prob. 108QRTCh. 16 - Prob. 109QRTCh. 16 - Reword the statement in Question 109 so that it is...Ch. 16 - Prob. 111QRTCh. 16 - Prob. 112QRTCh. 16 - Prob. 113QRTCh. 16 - Prob. 114QRTCh. 16 - Prob. 115QRTCh. 16 - Prob. 116QRTCh. 16 - From data in Appendix J, estimate (a) the boiling...Ch. 16 - Prob. 118QRTCh. 16 - Prob. 119QRTCh. 16 - Prob. 120QRTCh. 16 - Prob. 121QRTCh. 16 - Prob. 122QRTCh. 16 - Prob. 123QRTCh. 16 - Prob. 124QRTCh. 16 - Prob. 125QRTCh. 16 - Prob. 126QRTCh. 16 - The standard equilibrium constant is 2.1109for...Ch. 16 - Prob. 16.ACPCh. 16 - Prob. 16.CCPCh. 16 - Prob. 16.DCPCh. 16 - Consider planet Earth as a thermodynamic system....
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY