Physics: Principles with Applications
Physics: Principles with Applications
6th Edition
ISBN: 9780130606204
Author: Douglas C. Giancoli
Publisher: Prentice Hall
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 16, Problem 61GP

(a)

To determine

The distance covered by the electron before it stops.

(a)

Expert Solution
Check Mark

Answer to Problem 61GP

  11.55×10-2m

Explanation of Solution

Given:

The speed of the electron is 21.5×106m/s .

The magnitude of electric field is 11.4×103N/C .

The electron is travelling parallel to the electric field.

Formula used:

  F = ma

Where,

  F is the force on the electron,

  m is the mass of electron which is 9.1×1031kg

  a is the acceleration.

  F = qE

Where,

  q is the charge on an electron which is 1.6×10-19C .

  E is the magnitude of the electric field applied.

  v2= u2- 2aS

Where,

  v is the final velocity,

  u is the initial velocity and

  S is the displacement of the electron.

Calculation:

The acceleration can be calculated by equating the force equations.

  F=qEma=qE

  a =qEm

  a=(1.6×10-19)×(11.4×103)(9.1×10-31)

  a=2×1015m/s2

Here, the final velocity of the electron is zero. So, the distance travelled by the electron before it stops is

  v2=u2- 2aS

  0=u2-2aS

  S=u22a

  S=(21.5×106)22(2×1015)

  S=11.55×10-2m

(b)

To determine

The time before the electron returns to its starting point.

(b)

Expert Solution
Check Mark

Answer to Problem 61GP

  2.15×10-8s

Explanation of Solution

Given:

The speed of the electron is 21.5×106m/s .

The magnitude of electric field is 11.4×103N/C .

The acceleration is 2×1015m/s2 .

The electron is travelling parallel to the electric field.

Formula used:

  v = u + at

Where,

  v is the final velocity of the electron.

  u is the initial velocity of the electron.

  a is the acceleration on the electron.

  t is the time period.

Calculation:

The time that the electron will take to reach its initial position is twice the time it take to reach zero velocity.

  v = u + at

  0 = u +(-at)

  u = at

  t =ua

  t =21.5×1062×1015

  t =1.075×10-8s

The time taken to reach the initial value is

  2t = 2×(1.075×10-8)s2t = 2.15×10-8s

Chapter 16 Solutions

Physics: Principles with Applications

Ch. 16 - Prob. 11QCh. 16 - Prob. 12QCh. 16 - Prob. 13QCh. 16 - Prob. 14QCh. 16 - Prob. 15QCh. 16 - Prob. 16QCh. 16 - Prob. 17QCh. 16 - Assume that the two opposite charges in Fig....Ch. 16 - Consider the electric field at the three points...Ch. 16 - Why can electric field lines never cross?Ch. 16 - Show, using the three rules for field lines given...Ch. 16 - Given two point charges, Q and 2Q, a distance l...Ch. 16 - Consider a small positive test charge located on...Ch. 16 - A point charge is surrounded by a spherical...Ch. 16 - Prob. 1PCh. 16 - Prob. 2PCh. 16 - Prob. 3PCh. 16 - Prob. 4PCh. 16 - Prob. 5PCh. 16 - Prob. 6PCh. 16 - Prob. 7PCh. 16 - Prob. 8PCh. 16 - Prob. 9PCh. 16 - Prob. 10PCh. 16 - Prob. 11PCh. 16 - Prob. 12PCh. 16 - Prob. 13PCh. 16 - Prob. 14PCh. 16 - Prob. 15PCh. 16 - Prob. 16PCh. 16 - Prob. 17PCh. 16 - Prob. 18PCh. 16 - Prob. 19PCh. 16 - Prob. 20PCh. 16 - Prob. 21PCh. 16 - Prob. 22PCh. 16 - Prob. 23PCh. 16 - Prob. 24PCh. 16 - Prob. 25PCh. 16 - Prob. 26PCh. 16 - Prob. 27PCh. 16 - Prob. 28PCh. 16 - Prob. 29PCh. 16 - Prob. 30PCh. 16 - Prob. 31PCh. 16 - Prob. 32PCh. 16 - Prob. 33PCh. 16 - Prob. 34PCh. 16 - Prob. 35PCh. 16 - Prob. 36PCh. 16 - Prob. 37PCh. 16 - Prob. 38PCh. 16 - Prob. 39PCh. 16 - Prob. 40PCh. 16 - Prob. 41PCh. 16 - Prob. 42PCh. 16 - Prob. 43PCh. 16 - Prob. 44PCh. 16 - Prob. 45PCh. 16 - Prob. 46PCh. 16 - Prob. 47PCh. 16 - Prob. 48PCh. 16 - Prob. 49PCh. 16 - Prob. 50PCh. 16 - Prob. 51PCh. 16 - Prob. 52GPCh. 16 - Prob. 53GPCh. 16 - Prob. 54GPCh. 16 - Prob. 55GPCh. 16 - Prob. 56GPCh. 16 - Prob. 57GPCh. 16 - Prob. 58GPCh. 16 - Prob. 59GPCh. 16 - Prob. 60GPCh. 16 - Prob. 61GPCh. 16 - Prob. 62GPCh. 16 - Prob. 63GPCh. 16 - Prob. 64GPCh. 16 - Prob. 65GPCh. 16 - Prob. 66GPCh. 16 - Prob. 67GPCh. 16 - Prob. 68GPCh. 16 - Prob. 69GPCh. 16 - Prob. 70GPCh. 16 - Prob. 71GPCh. 16 - Prob. 72GPCh. 16 - Prob. 73GP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY