Concept explainers
(a)
The position, velocity and acceleration of each of the simple harmonic oscillator’s at time
(a)
Answer to Problem 5PQ
At
Explanation of Solution
Write the expression for the velocity of the simple harmonic oscillator.
Here,
Write the general equation of acceleration of a simple harmonic oscillator.
Here,
Write the relation between maximum acceleration and maximum displacement.
Here,
Write the general expression for the velocity of simple harmonic oscillator.
Here,
Write the expression for the maximum velocity.
Substitute (V) in (IV) to get relation of
Write the expression for the displacement of the simple harmonic oscillator.
Conclusion:
Compare equation (I) and (IV) to get
Compare equation (I) and (IV) to get
Compare equation (I) and (IV) to get
Substitute
Substitute
Substitute
Substitute
Consider
Substitute
Substitute
Substitute
Therefore, at
(b)
The position, velocity and acceleration of simple harmonic oscillator at
(b)
Answer to Problem 5PQ
At
Explanation of Solution
Use equation (I) to calculate velocity, equation (VIII) to calculate acceleration and equation (IX) to calculate position of simple harmonic oscillator.
Conclusion:
Consider
Substitute
Substitute
Substitute
Therefore, at
(c)
The position, velocity and acceleration of simple harmonic oscillator at
(c)
Answer to Problem 5PQ
At
Explanation of Solution
Use equation (I) to calculate velocity, equation (VIII) to calculate acceleration and equation (IX) to calculate position of simple harmonic oscillator.
Conclusion:
Consider
Substitute
Substitute
Substitute
Therefore, at
Want to see more full solutions like this?
Chapter 16 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- The velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.arrow_forwardThe velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed. NOT AI PLSarrow_forwardThe velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.arrow_forward
- The velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.arrow_forwardPlease don't use Chatgpt will upvote and give handwritten solutionarrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward
- An electron and a proton are each accelerated through a potential difference of 21.0 million volts. Find the momentum (in MeV/c) and the kinetic energy (in MeV) of each, and compare with the results of using the classical formulas. Momentum (MeV/c) relativistic classical electron proton Kinetic Energy (MeV)arrow_forwardFour capacitors are connected as shown in the figure below. (Let C = 20.0 µF.) (a) Find the equivalent capacitance between points a and b. µF (b) Calculate the charge on each capacitor, taking ΔVab = 14.0 V. 20.0 µF capacitor µC 6.00 µF capacitor µC 3.00 µF capacitor µC capacitor C µCarrow_forward11. At what point in SHM is the velocity maximum? Displacement maximum?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning