Physics for Scientists and Engineers: Foundations and Connections
Physics for Scientists and Engineers: Foundations and Connections
15th Edition
ISBN: 9781305289963
Author: Debora M. Katz
Publisher: Cengage Custom Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 16, Problem 82PQ
To determine

To prove the relation for system.

Expert Solution & Answer
Check Mark

Answer to Problem 82PQ

The solution to the equation is Fmaxcos(ωdrvt)=m(d2y/dt2)+b(dy/dt)+ky_.

Explanation of Solution

Write the expression for the given solution of the equation.

  y(t)=Adrvcos(ωdrvt+ϕdrv)                                                                                  (I)

Here, y(t) is the instantaneous displacement, Adrv is the amplitude, ωdrv is the angular frequency, t is the time and ϕdrv is the phase angle.

Write the expression for the equation.

  Fmaxcos(ωdrvt)=m(d2y/dt2)+b(dy/dt)+ky                                                 (II)

Here, Fmax is the maximum force, (d2y/dt2) is the second derivative and (dy/dt) is the first derivative.

Write the expression for the angular frequency.

  ωdrv=km                                                                                                         (III)

Here, k is wave vector and m is mass.

Conclusion:

Taking first and second derivative from equation (I).

  dydt=ωdrvAdrvsin(ωdrvt+ϕdrv)                                                                        (IV)

  d2ydt2=ωdrv2Adrvcos(ωdrvt+ϕdrv)                                                                       (V)

Substitute ωdrvAdrvsin(ωdrvt+ϕdrv) for dydt, ωdrv2Adrvcos(ωdrvt+ϕdrv) for d2ydt2 and Adrvcos(ωdrvt+ϕdrv) for y(t) in Equation (II) to find Fmaxcos(ωdrvt).

  Fmaxcos(ωdrvt)=(m[ωdrv2Adrvcos(ωdrvt+ϕdrv)]+b[ωdrvAdrvsin(ωdrvt+ϕdrv)]+k[Adrvcos(ωdrvt+ϕdrv)])                             (VI)

Using trigonometric identity and comparing both side the components of sine and cosine terms.

  Fmax=Adrv[(kmωdrv2)cos(ϕdrv)bωdrvsinϕdrv]                                             (VII)

  0=Adrv[(kmωdrv2)sin(ϕdrv)bωdrvcosϕdrv]                                              (VIII)

Write the expression for the trigonometric identities by using equation (VIII).

  tan(ϕdrv)=bωdrvkmωdrv2                                                                                       (IX)

  sin(ϕdrv)=bωdrv(bωdrv)2+(kmωdrv2)2                                                                 (X)

  cos(ϕdrv)=(kmωdrv2)(bωdrv)2+(kmωdrv2)2                                                               (XI)

Substitute bωdrv(bωdrv)2+(kmωdrv2)2 for sin(ϕdrv) and (kmωdrv2)(bωdrv)2+(kmωdrv2)2 for cos(ϕdrv) in equation (VII) to find Adrv.

  Fmax=Adrv[(kmωdrv2)[(kmωdrv2)(bωdrv)2+(kmωdrv2)2]bωdrv[bωdrv(bωdrv)2+(kmωdrv2)2]]=Adrv(bωdrv)2+m2(ω2ωdrv2)Adrv=Fmax(bωdrv)2+m2(ω2ωdrv2)

Thus, the solution is satisfying both side of the equation.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
4B. Four electrons are located on the corners of a square, one on each corner, with the sides of the square being 25 cm long. a) Draw a sketch of the scenario and use your sketch to b)  Determine the total force (magnitude and direction) on one of the electrons from the other three?
Portfolio Problem 3. A ball is thrown vertically upwards with a speed vo from the floor of a room of height h. It hits the ceiling and then returns to the floor, from which it rebounds, managing just to hit the ceiling a second time. Assume that the coefficient of restitution between the ball and the floor, e, is equal to that between the ball and the ceiling. Compute e.
Portfolio Problem 4. Consider two identical springs, each with natural length and spring constant k, attached to a horizontal frame at distance 2l apart. Their free ends are attached to the same particle of mass m, which is hanging under gravity. Let z denote the vertical displacement of the particle from the hori- zontal frame, so that z < 0 when the particle is below the frame, as shown in the figure. The particle has zero horizontal velocity, so that the motion is one dimensional along z. 000000 0 eeeeee (a) Show that the total force acting on the particle is X F-mg k-2kz 1 (1. l k. (b) Find the potential energy U(x, y, z) of the system such that U x = : 0. = O when (c) The particle is pulled down until the springs are each of length 3l, and then released. Find the velocity of the particle when it crosses z = 0.

Chapter 16 Solutions

Physics for Scientists and Engineers: Foundations and Connections

Ch. 16 - Prob. 5PQCh. 16 - Prob. 6PQCh. 16 - The equation of motion of a simple harmonic...Ch. 16 - The expression x = 8.50 cos (2.40 t + /2)...Ch. 16 - A simple harmonic oscillator has amplitude A and...Ch. 16 - Prob. 10PQCh. 16 - A 1.50-kg mass is attached to a spring with spring...Ch. 16 - Prob. 12PQCh. 16 - Prob. 13PQCh. 16 - When the Earth passes a planet such as Mars, the...Ch. 16 - A point on the edge of a childs pinwheel is in...Ch. 16 - Prob. 16PQCh. 16 - Prob. 17PQCh. 16 - A jack-in-the-box undergoes simple harmonic motion...Ch. 16 - C, N A uniform plank of length L and mass M is...Ch. 16 - Prob. 20PQCh. 16 - A block of mass m = 5.94 kg is attached to a...Ch. 16 - A block of mass m rests on a frictionless,...Ch. 16 - It is important for astronauts in space to monitor...Ch. 16 - Prob. 24PQCh. 16 - A spring of mass ms and spring constant k is...Ch. 16 - In an undergraduate physics lab, a simple pendulum...Ch. 16 - A simple pendulum of length L hangs from the...Ch. 16 - We do not need the analogy in Equation 16.30 to...Ch. 16 - Prob. 29PQCh. 16 - Prob. 30PQCh. 16 - Prob. 31PQCh. 16 - Prob. 32PQCh. 16 - Prob. 33PQCh. 16 - Show that angular frequency of a physical pendulum...Ch. 16 - A uniform annular ring of mass m and inner and...Ch. 16 - A child works on a project in art class and uses...Ch. 16 - Prob. 37PQCh. 16 - Prob. 38PQCh. 16 - In the short story The Pit and the Pendulum by...Ch. 16 - Prob. 40PQCh. 16 - A restaurant manager has decorated his retro diner...Ch. 16 - Prob. 42PQCh. 16 - A wooden block (m = 0.600 kg) is connected to a...Ch. 16 - Prob. 44PQCh. 16 - Prob. 45PQCh. 16 - Prob. 46PQCh. 16 - Prob. 47PQCh. 16 - Prob. 48PQCh. 16 - A car of mass 2.00 103 kg is lowered by 1.50 cm...Ch. 16 - Prob. 50PQCh. 16 - Prob. 51PQCh. 16 - Prob. 52PQCh. 16 - Prob. 53PQCh. 16 - Prob. 54PQCh. 16 - Prob. 55PQCh. 16 - Prob. 56PQCh. 16 - Prob. 57PQCh. 16 - An ideal simple harmonic oscillator comprises a...Ch. 16 - Table P16.59 gives the position of a block...Ch. 16 - Use the position data for the block given in Table...Ch. 16 - Consider the position data for the block given in...Ch. 16 - Prob. 62PQCh. 16 - Prob. 63PQCh. 16 - Use the data in Table P16.59 for a block of mass m...Ch. 16 - Consider the data for a block of mass m = 0.250 kg...Ch. 16 - A mass on a spring undergoing simple harmonic...Ch. 16 - A particle initially located at the origin...Ch. 16 - Consider the system shown in Figure P16.68 as...Ch. 16 - Prob. 69PQCh. 16 - Prob. 70PQCh. 16 - Prob. 71PQCh. 16 - Prob. 72PQCh. 16 - Determine the period of oscillation of a simple...Ch. 16 - The total energy of a simple harmonic oscillator...Ch. 16 - A spherical bob of mass m and radius R is...Ch. 16 - Prob. 76PQCh. 16 - A lightweight spring with spring constant k = 225...Ch. 16 - Determine the angular frequency of oscillation of...Ch. 16 - Prob. 79PQCh. 16 - A Two springs, with spring constants k1 and k2,...Ch. 16 - Prob. 81PQCh. 16 - Prob. 82PQ
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Supersonic Speed and Shock Waves; Author: AK LECTURES;https://www.youtube.com/watch?v=HfSSi3KJZB0;License: Standard YouTube License, CC-BY