Fundamentals of Physics
10th Edition
ISBN: 9781118230718
Author: David Halliday
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16, Problem 50P
To determine
To find:
a) The displacement of the string particle at
b) The displacement of the string particle at
c) The transverse velocity of the string particle at
d) The transverse velocity of the string particle at
e) Sketch of the standing wave at t=0.50s for the range
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
y.
50 For a particular transverse
standing wave on a long string, one
of the antinodes is at x = 0 and an
adjacent node is at x= 0.10 m. The
displacement y(t) of the string parti-
cle at x = 0 is shown in Fig. 16-40,
where the scale of the y axis is set by
y, = 4.0 cm. When t = 0.50 s, what is
the displacement of the string particle
at (a) x = 0.20 m and (b) x = 0.30 m?
What is the transverse velocity of the string particle at x = 0.20 m at
(c) t = 0.50 s and (d) t = 1.0 s? (e) Sketch the standing wave at t =
0.50 s for the rangex = 0 to x = 0.40 m.
0.5
t (s)
1.5 2,0
Figure 16-40 Problem 50.
y (cm)
A transverse wave traveling along an x axis has the fornm
given by
(16-18)
y =y," sin(kx ± ω1 + φ).
Figure 16-8a gives the displacement of string elements as a
function of , al at time0. Figure 16-8h gives the
displacements of the element at x 0 as a function oft. Find
the values of the quantities shown in Eq. 16-18, including the
correct choice of sign.
(min)
10
20
-10
-20
-9
*レ
b)
50 For a particular transverse
standing wave on a long string, one
of the antinodes is at x = 0 and an
adjacent node is at x = 0.10 m. The
displacement y(t) of the string parti-
cle at x = 0 is shown in Fig. 16-40,
where the scale of the y axis is set by
y, = 4.0 cm. Whent = 0.50 s, what is
the displacement of the string particle
at (a) x = 0.20 m and (b) x = 0.30 m?
What is the transverse velocity of the string particle at x = 0.20 m at
(c) t = 0.50 s and (d) t= 1.0 s? (e) Sketch the standing wave at t =
0.50 s for the range x = 0 to x = 0.40 m.
t (s)
1.5 2,0
0.5
Figure 16-40 Problem 50.
(uɔ) K
Chapter 16 Solutions
Fundamentals of Physics
Ch. 16 - Prob. 1QCh. 16 - Prob. 2QCh. 16 - Prob. 3QCh. 16 - Prob. 4QCh. 16 - Prob. 5QCh. 16 - The amplitudes and phase differences for four...Ch. 16 - Prob. 7QCh. 16 - a If a standing wave on a siring is given by y't =...Ch. 16 - Prob. 9QCh. 16 - If you set up the seventh harmonic on a string, a...
Ch. 16 - Prob. 11QCh. 16 - If a wave yx, t = 6.0mm sinkx 600 rad/st ...Ch. 16 - Prob. 2PCh. 16 - A wave has an angular frequency of 110 rad/s and a...Ch. 16 - Prob. 4PCh. 16 - A sinusoidal wave travels along a string. The time...Ch. 16 - Prob. 6PCh. 16 - A transverse sinusoidal wave is moving along a...Ch. 16 - Prob. 8PCh. 16 - Prob. 9PCh. 16 - The equation of a transverse wave traveling along...Ch. 16 - Prob. 11PCh. 16 - GO The function yx, t = 15.0 cm cosx 15 t, with x...Ch. 16 - Prob. 13PCh. 16 - The equation of a transverse wave on a string is y...Ch. 16 - Prob. 15PCh. 16 - The speed of a transverse wave on a string is 170...Ch. 16 - The linear density of a string is 1.6 104 kg/m. A...Ch. 16 - Prob. 18PCh. 16 - SSM What is the speed of a transverse wave in a...Ch. 16 - The tension in a wire clamped at both ends is...Ch. 16 - ILW A 100 g wire is held under a tension of 250 N...Ch. 16 - A sinusoidal wave is traveling on a string with...Ch. 16 - SSM ILW A sinusoidal transverse wave is traveling...Ch. 16 - Prob. 24PCh. 16 - A uniform rope of mass m and length L hangs from a...Ch. 16 - A string along which waves can travel is 2.70 m...Ch. 16 - Prob. 27PCh. 16 - Use the wave equation to find the speed of a wave...Ch. 16 - Use the wave equation to find the speed of a wave...Ch. 16 - Use the wave equation to find the speed of a wave...Ch. 16 - Prob. 31PCh. 16 - What phase difference between two identical...Ch. 16 - Prob. 33PCh. 16 - Prob. 34PCh. 16 - SSM Two sinusoidal waves of the same frequency...Ch. 16 - Four waves are to be sent along the same string,...Ch. 16 - GO These two waves travel along the same string:...Ch. 16 - Two sinusoidal waves of the same frequency are to...Ch. 16 - Two sinusoidal waves of the same period, with...Ch. 16 - Two sinusoidal waves with identical wavelengths...Ch. 16 - Prob. 41PCh. 16 - Prob. 42PCh. 16 - SSM WWW What are a the lowest frequency, b the...Ch. 16 - A 125 cm length of string has mass 2.00 g and...Ch. 16 - Prob. 45PCh. 16 - String A is stretched between two clamps separated...Ch. 16 - Prob. 47PCh. 16 - If a transmission line in a cold climate collects...Ch. 16 - Prob. 49PCh. 16 - Prob. 50PCh. 16 - Prob. 51PCh. 16 - A rope, under a tension of 200 N and fixed at both...Ch. 16 - Prob. 53PCh. 16 - Prob. 54PCh. 16 - GO The following two waves are sent in opposite...Ch. 16 - A standing wave pattern on a string is described...Ch. 16 - A generator at one end of a very long string...Ch. 16 - GO In Fig. 16-42, a string, tied to a sinusoidal...Ch. 16 - GO In Fig. 16-43, an aluminum wire, of length L1 =...Ch. 16 - Prob. 60PCh. 16 - Prob. 61PCh. 16 - Prob. 62PCh. 16 - A wave has a speed of 240 m/s and a wavelength of...Ch. 16 - The equation of a transverse wave traveling alone...Ch. 16 - The equation of a transverse wave traveling along...Ch. 16 - Prob. 66PCh. 16 - Prob. 67PCh. 16 - Prob. 68PCh. 16 - Prob. 69PCh. 16 - Prob. 70PCh. 16 - A transverse sinusoidal wave is generated at one...Ch. 16 - Prob. 72PCh. 16 - Prob. 73PCh. 16 - Prob. 74PCh. 16 - a What is the fastest transverse wave that can be...Ch. 16 - A standing wave results from the sum of two...Ch. 16 - Prob. 77PCh. 16 - Prob. 78PCh. 16 - Prob. 79PCh. 16 - When played in a certain manner, the lowest...Ch. 16 - A sinusoidal transverse wave traveling in the...Ch. 16 - Two sinusoidal waves of the same wavelength travel...Ch. 16 - Prob. 83PCh. 16 - Prob. 84PCh. 16 - Prob. 85PCh. 16 - a Write an equation describing a sinusoidal...Ch. 16 - A wave on a string is described by yx, t = 15.0...Ch. 16 - Prob. 88PCh. 16 - Two waves are described by...Ch. 16 - Prob. 90PCh. 16 - SSM In a demonstration, a 1.2 kg horizontal rope...Ch. 16 - Prob. 92PCh. 16 - A traveling wave on a string is described by...Ch. 16 - Prob. 94PCh. 16 - Prob. 95PCh. 16 - Consider a loop in the standing wave created by...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two sinusoidal waves are moving through a medium in the same direction, both having amplitudes of 3.00 cm, a wavelength of 5.20 m, and a period of 6.52 s, but one has a phase shift of an angle . What is the phase shift if the resultant wave has an amplitude of 5.00 cm? [Hint: Use the trig identity sinu+sinv=2sin(u+v2)cos(uv2)arrow_forwardA sound wave in air has a pressure amplitude equal to 4.00 103 Pa. Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.arrow_forwardThe speed of a transverse wave on a string is 300.00 m/s, its wavelength is 0.50 m, and the amplitude is 20.00 cm. How much time is required for a particle on the string to move through a distance of 5.00 km?arrow_forward
- A string is fixed at both end. The mass of the string is 0.0090 kg and the length is 3.00 m. The string is under a tension of 200.00 N. The string is driven by a variable frequency source to produce standing waves on the string. Find the wavelengths and frequency of the first four modes of standing waves.arrow_forwardTwo sinusoidal waves are moving through a medium in the positive x-direction, both having amplitudes of 6.00 cm, a wavelength of 4.3 m, and a period of 6.00 s, but one has a phase shift of an angle =0.50 rad. What is the height of the resultant wave at a time t=3.15 s and a position x=0.45 m ?arrow_forwardA string with a mass of 0.30 kg has a length of 4.00 m. If the tension in the string is 50.00 N, and a sinusoidal wave with an amplitude of 2.00 cm is induced on the string, what must the frequency be for an average power of 100.00 W?arrow_forward
- Consider two sinusoidal waves traveling along a string, modeled as y1(x,t)=0.3msin(4m1x+3s1t) and y2(x,t)=0.6msin(8m1x6s1t) . What is the height of the resultant wave formed by the interference of the two waves at the position x=0.5 m at time t=0.2 s?arrow_forwardPipe A has a length L and is open at both ends. Pipe B has a length L/2 and has one open end and one closed end. Assume the speed of sound to be the same in both tubes. Which of the harmonics in each tube would be equal?arrow_forwardTwo identical strings, of identical lengths of 2.00 m and linear mass density of =0.0065 kg/m, are fixed on both ends. String A is under a tension of 120.00 N. String B is under a tension of 130.00 N. They are each plucked and produce sound at the n=10 mode. What is the beat frequency?arrow_forward
- A series of pulses, each of amplitude 0.150 m, are sent down a string that is attached to a post at one end. The pulses are reflected at the post and travel back along the string without loss of amplitude. When two waves are present on the same string, the net displacement of a particular element of the string is the sum of the displacements of the individual waves at that point. What is the net displacement of an element at a point on the string where two pulses are crossing (a) if the string is rigidly attached to the post and (b) if the end at which reflection occurs is free to slide up and down?arrow_forwardFor a standing wave on a string, the distance between nodes is 0.125 m, the frequency is 256 Hz, and the amplitude is 1.40 * 10-3 m. What are (a) the speed of waves on this string, (b) the maximum transverse velocity at an antinode, and (c) the maximum transverse acceleration at an antinode?arrow_forward•50 For a particular transverse standing wave on a long string, one of the antinodes is at x = 0 and an Ys adjacent node is at x = 0.10 m. The displacement y(t) of the string parti- cle at x = 0 is shown in Fig. 16-40, where the scale of the y axis is set by y, = 4.0 cm. When t = 0.50 s, what is the displacement of the string particle at (a) x = 0.20 m and (b) x = 0.30 m? What is the transverse velocity of the string particle at x = 0.20 m at (c) t = 0.50 s and (d) t = 1.0 s? (e) Sketch the standing wave at t = 0.50 s for the range x = 0 tox = 0.40 m. 0. 0.5 1.5 20 (s) 一。 Figure 16-40 Problem 50. (uD) &arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning