Concept explainers
GO These two waves travel along the same string:
y1(x, t) = (4.60 mm) sin(2πx − 400πt)
y2(x, t) = (5.60 mm) sin(2πx − 400πt + 0.8π rad).
What are (a) the amplitude and (b) the phase angle (relative to wave 1) of the resultant wave? (c) If a third wave of amplitude 5.00 mm is also to be sent along the string in the same direction as the first two waves, what should be its phase angle in order to maximize the amplitude of the new resultant wave?
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
Fundamentals of Physics
Additional Science Textbook Solutions
Genetic Analysis: An Integrated Approach (3rd Edition)
Chemistry: Structure and Properties (2nd Edition)
Campbell Essential Biology (7th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Fundamentals Of Thermodynamics
Microbiology: An Introduction
- The equation of a harmonic wave propagating along a stretched string is represented by y(x, t) = 4.0 sin (1.5x 45t), where x and y are in meters and the time t is in seconds. a. In what direction is the wave propagating? be. N What are the b. amplitude, c. wavelength, d. frequency, and e. propagation speed of the wave?arrow_forwardTwo sinusoidal waves are moving through a medium in the same direction, both having amplitudes of 3.00 cm, a wavelength of 5.20 m, and a period of 6.52 s, but one has a phase shift of an angle . What is the phase shift if the resultant wave has an amplitude of 5.00 cm? [Hint: Use the trig identity sinu+sinv=2sin(u+v2)cos(uv2)arrow_forwardA harmonic transverse wave function is given by y(x, t) = (0.850 m) sin (15.3x + 10.4t) where all values are in the appropriate SI units. a. What are the propagation speed and direction of the waves travel? b. What are the waves period and wavelength? c. What is the amplitude? d. If the amplitude is doubled, what happens to the speed of the wave?arrow_forward
- Two sinusoidal waves are moving through a medium in the positive x-direction, both having amplitudes of 6.00 cm, a wavelength of 4.3 m, and a period of 6.00 s, but one has a phase shift of an angle =0.50 rad. What is the height of the resultant wave at a time t=3.15 s and a position x=0.45 m ?arrow_forwardTwo sinusoidal waves are moving through a medium in the positive x-direction, both having amplitudes of 7.00 cm, a wave number of k=3.00 m-1, an angular frequency of =2.50 s-1, and a period of 6.00 s, but one has a phase shift of an angle =12 rad. What is the height of the resultant wave at a time t=2.00 s and a position x=0.53 m?arrow_forwardRank the waves represented by the following functions from the largest to the smallest according to (i) their amplitudes, (ii) their wavelengths, (iii) their frequencies, (iv) their periods, and (v) their speeds. If the values of a quantity are equal for two waves, show them as having equal rank. For all functions, x and y are in meters and t is in seconds. (a) y = 4 sin (3x 15t) (b) y = 6 cos (3x + 15t 2) (c) y = 8 sin (2x + 15t) (d) y = 8 cos (4x + 20t) (e) y = 7 sin (6x + 24t)arrow_forward
- A sound wave in air has a pressure amplitude equal to 4.00 103 Pa. Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.arrow_forwardA transverse sinusoidal wave on a string has a period T = 25.0 ms and travels in the negative x direction with a speed of 30.0 m/s. At t = 0, an element of the string at x = 0 has a transverse position of 2.00 cm and is traveling downward with a speed of 2.00 m/s. (a) What is the amplitude of the wave? (b) What is the initial phase angle? (c) What is the maximum transverse speed of an element of the string? (d) Write the wave function for the wave.arrow_forwardAssume two identical sinusoidal waves are moving through the same medium in the same direction. Under what condition will the amplitude of the resultant wave be greater than either of the two original waves? (a) in all cases (b) only if the waves have no difference in phase (c) only if the phase difference is less than 90 (d) only if the phase difference is less than 120 (e) only if the phase difference is less than 180arrow_forward
- When a standing wave is set up on a string fixed at both ends, which of the following statements is true? (a) The number of nodes is equal to the number of antinodes. (b) The wavelength is equal to the length of the string divided by an integer. (c) The frequency is equal to the number of nodes times the fundamental frequency. (d) The shape of the string at any instant shows a symmetry about the midpoint of the string.arrow_forwardTwo sinusoidal waves with identical wavelengths and amplitudes travel in opposite directions along a string producing a standing wave. The linear mass density of the string is =0.075 kg/m and the tension in the string is FT=5.00 N. The time interval between instances of total destructive interference is t=0.13 s. What is the wavelength of the waves?arrow_forwardThese two waves travel along the same string: Y1 = (3.79 mm) sin(1.75Tx - 440t) y2 = (5.82 mm) sin(1.75Tx - 440tt + 0.8617trad). What are (a) the amplitude and (b) the phase angle (relative to wave 1) of the resultant wave? (c) If a third wave of amplitude 5.14 mm is also to be sent along the string in the same direction as the first two waves, what should be its phase angle in order to maximize the amplitude of the new resultant wave? (a) Number UnitšT mm 2.8741 (b) Number Units rad 1.0283 (c) Number 1.0283 UnitšTradarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning