The specific growth rate of a yeast that produces an antibiotic is a function of the food concentration c,
As depicted in Fig. P16.4, growth goes to zero at very low concentrations due to food limitation. It also goes to zero at high concentrations due to toxicity effects. Find the value of c at which growth is a maximum.
FIGURE P16.4
The specific growth rate of a yeast that produces an antibiotic versus the food concentration.
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
EBK NUMERICAL METHODS FOR ENGINEERS
- The table shows the mid-year populations (in millions) of five countries in 2015 and the projected populations (in millions) for the year 2025. (a) Find the exponential growth or decay model y=aebt or y=aebt for the population of each country by letting t=15 correspond to 2015. Use the model to predict the population of each country in 2035. (b) You can see that the populations of the United States and the United Kingdom are growing at different rates. What constant in the equation y=aebt gives the growth rate? Discuss the relationship between the different growth rates and the magnitude of the constant.arrow_forwardTable 6 shows the population, in thousands, of harbor seals in the Wadden Sea over the years 1997 to 2012. a. Let x represent time in years starting with x=0 for the year 1997. Let y represent the number of seals in thousands. Use logistic regression to fit a model to these data. b. Use the model to predict the seal population for the year 2020. c. To the nearest whole number, what is the limiting value of this model?arrow_forwardThe population P (in millions) of Texas from 2001 through 2014 can be approximated by the model P=20.913e0.0184t, where t represents the year, with t=1 corresponding to 2001. According to this model, when will the population reach 32 million?arrow_forward
- bThe average rate of change of the linear function f(x)=3x+5 between any two points is ________.arrow_forwardFocal Length A refracting telescope has a main lens, or objective lens, and a second lens, the eyepiece see Figure 3.42. For a given magnification M of the telescope, the focal length F of the objective lens is a linear function of the focal length Fe of the eyepiece. For example, a telescope with magnification M=80 times can be constructed using various combinations of lenses. The following table gives some samples of focal length for telescopes with magnification M=80. Here focal lengths are in centimeters. Fe 0.3 0.5 0.7 0.9 F 24 40 56 72 a. Construct a linear model for the data. b. In this example, the magnification M is 80. In general, F is proportional to Fe, and the constant of proportionality is M. Use this relation to write a formula for F in terms of Fe and M. c. Solve the equation you obtained in part b for M and thus obtain a formula for magnification as a function of objective lens focal length and eyepiece focal length. d. To achieve a large magnification, how should the objective and eyepiece lenses be selected? FIGURE 3.42arrow_forwardEastern Pacific Yellowfin Tuna Studies to fit a logistic model to the Eastern Pacific yellowfin tuna population have yielded N=1481+36e2.61t where t is measured in years and N is measured in thousands of tons of fish. a. What is the r value for the Eastern Pacific yellowfin tuna? b. What is the carrying capacity K for the Eastern Pacific yellowfin tuna? c. What is the optimum yield level? d. Use your calculator to graph N versus t. e. At what time was the population growing the most rapidly?arrow_forward
- When a certain drug is taken orally, the concentration of the drug in the patient's bloodstream After t minutes is given by C(t)=0.06t0.0002t2 where 0t240 and concentration is measured in mg/L .When is the maximum serum concentration reached, and what is that maximum concentration?arrow_forwardWorld Population The following table shows world population N, in billions, in the given year. Year 1950 1960 1970 1980 1990 2000 2010 N 2.56 3.04 3.71 4.45 5.29 6.09 6.85 a. Use regression to find a logistic model for world population. b. What r value do these data yield for humans on planet Earth? c. According to the logistic model using these data, what is the carrying capacity of planet Earth for humans? d. According to this model, when will world population reach 90 of carrying capacity? Round to the nearest year. Note: This represents a rather naive analysis of world population.arrow_forward
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill