Concept explainers
Determine pH at the equivalence point in the titration of 26.0 mL 1.12 M pyridine with
(a) 7.00
(b) 2.76
(c) 11.24
(d) 1.73
(e) 12.27
![Check Mark](/static/check-mark.png)
Interpretation:
The pH at the equivalence point in the titration of pyridine with hydrochloric acid is to be determined.
Concept introduction:
When a weak base is titrated against a strong acid, the conjugate acid of the weak base is formed in the reaction, as shown:
This conjugate acid now acts as a Bronsted acid and reacts with water to form weak base and hydronium ions according to the reaction:
Here,
The relationship between
Where,
The formula to calculate the pH of the solution from the concentration of hydronium ions is expressed as
Molarity
Rearrange this equation in terms of moles as shown
When volume is given in
Answer to Problem 4KSP
Correct answer: Option (b).
Explanation of Solution
Given information:
The concentration of pyridine
Reason for correct option:
From the given values of concentration and volume, calculate the number of millimoles of pyridineusing equation (4)
Being a strong acid,
At equivalence point, during the titration process, millimoles of weak base must be equal to the millimoles of the strong acid. Thus,
As the concentration of
Thus, the total volume of the solution containing
During titration, the weak base completelyneutralizes. Thus, the moles of weak base reacted is equal to the moles of its conjugate acid formed. Therefore,
Thus, the concentration of the conjugate acid
The anion
From table
Now, prepare an equilibrium table and represent each of the species in terms of
Now, substitute these concentrations in equation (2)
Since the value of
Thus,
Now, substitute the value of
Therefore, the equivalence pH of the solution is
Reason for incorrect options:
Since
Since
Since
Since
Therefore, options (a), (c), (d), and (e) are incorrect.
Want to see more full solutions like this?
Chapter 16 Solutions
BURDGE CHEMISTRY VALUE ED (LL)
- Don't used hand raiting and don't used Ai solutionarrow_forwardWe learned four factors (ARIO) for comparing the relative acidity of compounds. When two of these factors are in competition, the order of priority is the order in which these factors were covered ("atom" being the most important factor and "orbital" being the least important). However, we also mentioned that there are exceptions to this order of priority. Compare the two compounds and identify the exception. OH PK-4.75 SH PK-10.6 5. "Resonance" is more important than "atom" because the conjugate base of first compound is more stable than the second. "Atom" is more important than "resonance" because the conjugate base of first compound is more stable than the second. "Resonance" is more important than "atom" because the conjugate base of second compound is more stable than the first. "Atom" is more important than "resonance" because the conjugate base of second compound is more stable than the first.arrow_forwardThe relative fitnesses of three genotypes are WA/A= 1.0, WA/a = 0.7, and Wa/a = 0.3. If the population starts at the allele frequency p = 0.5, what is the value of p in the next generation? (3 pts) 12pt v Paragraph V BIU ALarrow_forward
- Identify the most acidic proton in the compound: a d b Оа Ob Ос ○ darrow_forwardA Standard Reference Material is certified to contain 94.6 ppm of an organic contaminant in soil. Your analysis gives values of 98.6, 98.4, 97.2, 94.6, and 96.2. Do your results differ from the expected results at the 95% confidence interval?arrow_forwardThe percentage of an additive in gasoline was measured six times with the following results: 0.13, 0.12, 0.16, 0.17, 0.20, and 0.11%. Find the 95% confidence interval for the percentage of additive.arrow_forward
- Explain why this data led Rayleigh to look for and to discover Ar.arrow_forward5) Confidence interval. Berglund and Wichardt investigated the quantitative determination of Cr in high-alloy steels using a potentiometric titration of Cr(VI). Before the titration, samples of the steel were dissolved in acid and the chromium oxidized to Cr(VI) using peroxydisulfate. Shown here are the results (as %w/w Cr) for the analysis of a reference steel. 16.968, 16.922, 16.840, 16.883, 16.887, 16.977, 16.857, 16.728 Calculate the mean, the standard deviation, and the 95% confidence interval about the mean. What does this confidence interval mean?arrow_forwardIn the Nitrous Acid Test for Amines, what is the observable result for primary amines? Group of answer choices nitrogen gas bubbles form a soluble nitrite salt yellow oily layer of nitrosoaminearrow_forward
- 3. a. Use the MS to propose at least two possible molecular formulas. For an unknown compound: 101. 27.0 29.0 41.0 50.0 52.0 55.0 57.0 100 57.5 58.0 58.5 62.0 63.0 64.0 65.0 74.0 40 75.0 76.0 20 20 40 60 80 100 120 140 160 180 200 220 m/z 99.5 68564810898409581251883040 115.0 116.0 77404799 17417M 117.0 12.9 118.0 33.5 119.0 36 133 0 1.2 157.0 2.1 159.0 16 169.0 219 170.0 17 171.0 21.6 172.0 17 181.0 1.3 183.0 197.0 100.0 198.0 200. 784 Relative Intensity 2 2 8 ō (ppm) 6 2arrow_forwardSolve the structure and assign each of the following spectra (IR and C-NMR)arrow_forward1. For an unknown compound with a molecular formula of C8H100: a. What is the DU? (show your work) b. Solve the structure and assign each of the following spectra. 8 6 2 ō (ppm) 4 2 0 200 150 100 50 ō (ppm) LOD D 4000 3000 2000 1500 1000 500 HAVENUMBERI -11arrow_forward
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168390/9781938168390_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337398909/9781337398909_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399425/9781337399425_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)