The pH of the solution which contains the salt sodium acetate is to be determined. Concept introduction: Salt is a strong electrolyte that dissociates completely when added to water. When a salt contains an anion that comes from a weak acid, the anion recombines with water to produce a weak acid and hydroxide ions, and forms a basic solution. The cation that comes from a strong base does not recombine and is present in the solution as a free ion without having any effect on the pH of the solution. The reaction of the salt ( BA ) which takes place is: A − ( a q ) + H 2 O ( l ) ⇌ HA ( a q ) + OH − ( a q ) Here, A − comes from the weak acid HA and B + comes from strong base BOH . The pH of this solution is determined by the [ OH − ] The relationship between K b , K a , and K w gives the quantitative basis of the reciprocal relationship between the strength of an acid and its conjugate base or vice-versa. K a × K b = K w …… (1) K b is the measure of dissociation of a base and is known as base-ionization constant that is specific at a particular temperature. K b = [ OH − ] [ HA ] [ A − ] …… (2) The formula to calculate the pOH of the solution from the concentration of hydroxide ions is: pOH = − log [ OH − ] …… (3) pH is the measure of acidity of a solution that depends on the concentration of hydronium ions and temperature of the solution. The relationship between pH and pOH is: pH + pOH = 14 …… (4)
The pH of the solution which contains the salt sodium acetate is to be determined. Concept introduction: Salt is a strong electrolyte that dissociates completely when added to water. When a salt contains an anion that comes from a weak acid, the anion recombines with water to produce a weak acid and hydroxide ions, and forms a basic solution. The cation that comes from a strong base does not recombine and is present in the solution as a free ion without having any effect on the pH of the solution. The reaction of the salt ( BA ) which takes place is: A − ( a q ) + H 2 O ( l ) ⇌ HA ( a q ) + OH − ( a q ) Here, A − comes from the weak acid HA and B + comes from strong base BOH . The pH of this solution is determined by the [ OH − ] The relationship between K b , K a , and K w gives the quantitative basis of the reciprocal relationship between the strength of an acid and its conjugate base or vice-versa. K a × K b = K w …… (1) K b is the measure of dissociation of a base and is known as base-ionization constant that is specific at a particular temperature. K b = [ OH − ] [ HA ] [ A − ] …… (2) The formula to calculate the pOH of the solution from the concentration of hydroxide ions is: pOH = − log [ OH − ] …… (3) pH is the measure of acidity of a solution that depends on the concentration of hydronium ions and temperature of the solution. The relationship between pH and pOH is: pH + pOH = 14 …… (4)
Solution Summary: The author explains that the pH of the solution which contains the salt sodium acetate is to be determined.
The pH of the solution which contains the salt sodium acetate is to be determined.
Concept introduction:
Salt is a strong electrolyte that dissociates completely when added to water.
When a salt contains an anion that comes from a weak acid, the anion recombines with water to produce a weak acid and hydroxide ions, and forms a basic solution. The cation that comes from a strong base does not recombine and is present in the solution as a free ion without having any effect on the pH of the solution.
The reaction of the salt (BA) which takes place is:
A−(aq)+H2O(l)⇌HA(aq)+OH−(aq)
Here, A− comes from the weak acid HA and B+ comes from strong base BOH. The pH of this solution is determined by the [OH−]
The relationship between Kb, Ka, and Kw gives the quantitative basis of the reciprocal relationship between the strength of an acid and its conjugate base or vice-versa.
Ka×Kb=Kw …… (1)
Kb is the measure of dissociation of a base and is known as base-ionization constant that is specific at a particular temperature.
Kb=[OH−][HA][A−] …… (2)
The formula to calculate the pOH of the solution from the concentration of hydroxide ions is:
pOH=−log[OH−] …… (3)
pH is the measure of acidity of a solution that depends on the concentration of hydronium ions and temperature of the solution. The relationship between pH and pOH is:
Given a 1,3-dicarbonyl compound (R1-CO-CH2-CO-R2), indicate the formula of the compound obtaineda) if I add hydroxylamine (NH2OH) to give an isooxazole.b) if I add thiosemicarbazide (NH2-CO-NH-NH2) to give an isothiazole.
An orange laser has a wavelength of 610 nm. What is the energy of this light?
The molar absorptivity of a protein in water at 280 nm can be estimated within ~5-10% from its content of the amino acids tyrosine and tryptophan and from the number of disulfide linkages (R-S-S-R) between cysteine residues:
Ε280 nm (M-1 cm-1) ≈ 5500 nTrp + 1490 nTyr + 125 nS-S
where nTrp is the number of tryptophans, nTyr is the number of tyrosines, and nS-S is the number of disulfide linkages. The protein human serum transferrin has 678 amino acids including 8 tryptophans, 26 tyrosines, and 19 disulfide linkages. The molecular mass of the most dominant for is 79550.
Predict the molar absorptivity of transferrin.
Predict the absorbance of a solution that’s 1.000 g/L transferrin in a 1.000-cm-pathlength cuvet.
Estimate the g/L of a transferrin solution with an absorbance of 1.50 at 280 nm.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.