Universe
11th Edition
ISBN: 9781319039448
Author: Robert Geller, Roger Freedman, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16, Problem 38Q
To determine
The reason why we cannot bake a potato in the corona, even when the corona is recreated in the lab for 1 hour and the temperature is 2 million Kelvin.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
the number of air density in a childs balloon is roughly the same as sea level air, 10^19 particles/ cm ^3. if the balloon is now 18 cm in diameter, to what diameter in km would it need to expand to make the gas have the same density as ISM, about 1 particle/cm^3
1 Solar constant, Sun, and the 10 pc distance!
The luminosity of Sun is + 4- 1026 W - 4- 1033ergs-1, The Sun is located at a distance of
m from the Earth. The Earth receives a radiant flux (above its atmosphere) of F = 1365W m- 2, also known as
the solar constant. What would have been the Solar contact if the Sun was at a distance of 10 pc ?
1AU 1 1.5-+ 1011
Assuming stars to behave as black bodies stefan-boltzmann law to show that the luminosity of a star is related to its surface temperature and size in the following way:
L = 4(3.14)R^2oT^4
where o= 5.67 ×10^-8 Wm^-2 K-4 is the stefan- boltzmann constant. Then use this expression together with the knowledge that the sun has a surface temperature of 5700k and radius 695 500km to calculate the luminosity of the Sun in units of Watts
Chapter 16 Solutions
Universe
Ch. 16 - Prob. 1CCCh. 16 - Prob. 2CCCh. 16 - Prob. 3CCCh. 16 - Prob. 4CCCh. 16 - Prob. 5CCCh. 16 - Prob. 6CCCh. 16 - Prob. 7CCCh. 16 - Prob. 8CCCh. 16 - Prob. 9CCCh. 16 - Prob. 10CC
Ch. 16 - Prob. 11CCCh. 16 - Prob. 12CCCh. 16 - Prob. 13CCCh. 16 - Prob. 14CCCh. 16 - Prob. 15CCCh. 16 - Prob. 16CCCh. 16 - Prob. 17CCCh. 16 - Prob. 18CCCh. 16 - Prob. 19CCCh. 16 - Prob. 1CLCCh. 16 - Prob. 2CLCCh. 16 - Prob. 1QCh. 16 - Prob. 2QCh. 16 - Prob. 3QCh. 16 - Prob. 4QCh. 16 - Prob. 5QCh. 16 - Prob. 6QCh. 16 - Prob. 7QCh. 16 - Prob. 8QCh. 16 - Prob. 9QCh. 16 - Prob. 10QCh. 16 - Prob. 11QCh. 16 - Prob. 12QCh. 16 - Prob. 13QCh. 16 - Prob. 14QCh. 16 - Prob. 15QCh. 16 - Prob. 16QCh. 16 - Prob. 17QCh. 16 - Prob. 18QCh. 16 - Prob. 19QCh. 16 - Prob. 20QCh. 16 - Prob. 21QCh. 16 - Prob. 22QCh. 16 - Prob. 23QCh. 16 - Prob. 24QCh. 16 - Prob. 25QCh. 16 - Prob. 26QCh. 16 - Prob. 27QCh. 16 - Prob. 28QCh. 16 - Prob. 29QCh. 16 - Prob. 30QCh. 16 - Prob. 31QCh. 16 - Prob. 32QCh. 16 - Prob. 33QCh. 16 - Prob. 34QCh. 16 - Prob. 35QCh. 16 - Prob. 36QCh. 16 - Prob. 37QCh. 16 - Prob. 38QCh. 16 - Prob. 39QCh. 16 - Prob. 40QCh. 16 - Prob. 41QCh. 16 - Prob. 42QCh. 16 - Prob. 43QCh. 16 - Prob. 44QCh. 16 - Prob. 45QCh. 16 - Prob. 46QCh. 16 - Prob. 47QCh. 16 - Prob. 48QCh. 16 - Prob. 50QCh. 16 - Prob. 51QCh. 16 - Prob. 52QCh. 16 - Prob. 53QCh. 16 - Prob. 54QCh. 16 - Prob. 55QCh. 16 - Prob. 56QCh. 16 - Prob. 57QCh. 16 - Prob. 58QCh. 16 - Prob. 59QCh. 16 - Prob. 60Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the wavelength in micrometers of peak emission for a black body at 33.5°C? (c = 3.0 × 108 m/s, Wien displacement law constant is 2.9 × 10-3 m ∙ K, σ = 5.67 × 10-8 W/m2 ∙ K4). Please give your answer with one decimal place.arrow_forwardIf the hottest star in the Carina Nebula has a surface temperature of 51,000 K, at what wavelength (in nm) does it radiate the most energy? Hint: Use Wien's law: ?max = 2.90 ✕ 106 nm · K T How does that compare with 91.2 nm, the wavelength of photons with just enough energy to ionize hydrogen? -The wavelength calculated above is shorter than 91.2 nm. Photons at this calculated wavelength will have more than enough energy to ionize hydrogen. -The wavelength calculated above is longer than 91.2 nm. Photons at this calculated wavelength will have more than enough energy to ionize hydrogen. -The wavelength calculated above is shorter than 91.2 nm. Photons at this calculated wavelength will not have enough energy to ionize hydrogen. -The wavelength calculated above is longer than 91.2 nm. Photons at this calculated wavelength will not have enough energy to ionize hydrogen.arrow_forwardTable 15.1 indicates that the density of the Sun is 1.41 g/cm3. Since other materials, such as ice, have similar densities, how do you know that the Sun is not made of ice?arrow_forward
- a) At solar maximum sunspots might cover up to 0.4% of the total area of the Sun. If the sunspots have a temperature of 3800 K and the surrounding photosphere has a temperature of 6000 K, calculate the fractional change (as a percentage) in the luminosity due to the presence of the sunspots. b) A star of the same stellar class as the Sun is observed regularly over many years, and a time series of its bolometric apparent magnitude is collected. What would be the signal in this time series which indicated that the star had a magnetic dynamo similar to the Sun? Briefly describe two or three possible sources of other signals which could confuse the interpretation of the data.arrow_forwardWhat is the wavelength of maximum intensity (in nm) and the total energy emitted (in J/s/m2) by a celestial object at 7 K above absolute zero? wavelength of maximum intensity? 414285.71 Total Energy? -----arrow_forwardGiven a 10 Jy source with an occupying 15'' in the sky, at a distance of 1.1 Mpc, observed at 1.4 GHz, determine the brightness temperature of the source.arrow_forward
- If our Sun were surrounded by a cloud of gas, would this cloud be an emission nebula? Why or why not?arrow_forwardIf you were located 100 km from a 1 GW nuclear power plant,what would the neutrino flux be at your location? Assume that a1 GW nuclear power plant releases 1021 neutrinos per second andyou present a 1 m2 surface to the neutrino flux.arrow_forwardExplain why the sky is blue and how that relates to reflection nebulae.arrow_forward
- I need the answer as soon as possiblearrow_forwardWhy are emission nebulae red ?arrow_forwardLTI Launch A PHY035 MODULE 2 REMONAL E X + A webassign.net/web/Student/Assignment-Responses/last?dep=29211510 Paus Apps Imported From IE a Registration: Noteb. O PS - PHILGEPS ONL. iLovePDF | Online P.. S Procurement Service REHABILITATION IC. p Government Procur. a Contact Us Philipp. our best submission for each question part is used for your score. 1. DETAILS KATZPSEF1 29.P.042. MY NOTES ASK YOUR TEACH The figure below shows five resistors and two batteries connected in a circuit. What are the currents I, , and I (Consider the following values: R, 1.06 n, R, 2.18 0, R-3.12 0, R-4.16 0, R-6.06 0. Due to the nature of this problem, do not use rounded intermediate values in your calculations-including answers submitted in WebAssign. Indicate the direction with the sign of your answer.) A Rs 12.0 V - ww R. 9.00 V Rarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning