Concept explainers
(a)
The longest wavelength (in nanometer) that can dislodge an electron from a negative hydrogen ion. Given that the amount of energy (
(a)
Answer to Problem 33Q
Solution:
Explanation of Solution
Given data:
The amount of energy (
Formula used:
Write the expression for the energy of a photon:
Here,
Explanation:
As Planck’s constant,
Also consider the speed of light,
Refer to the expression for the energy of a photon.
Substitute
Conclusion:
Hence, the longest wavelength that will emit an electron from the negative hydrogen ion will be
(b)
The part of the
(b)
Answer to Problem 33Q
Solution:
This wavelength will lie in the infrared region of the electromagnetic spectrum.
Explanation of Solution
Introduction:
The electromagnetic spectrum is broadly classified into three classes, which are ultraviolet region, visible, and infrared regions. The wavelength increases while the energy decreases from the ultraviolet to infrared region. The visible region lies between 400 to 700 nm.
Explanation:
The wavelength calculated in part (a) came out to be
Conclusion:
Therefore, the wavelength that will emit an electron from the negative hydrogen ion will lie in the infrared region of the electromagnetic spectrum.
(c)
Whether a photon of visible light will be able to dislodge the same electron from a negative hydrogen ion. Given that the amount of energy (
(c)
Answer to Problem 33Q
Solution:
Yes, a photon of the visible light will be able to dislodge an extra electron.
Explanation of Solution
Introduction:
The visible light is called so because it can be seen through naked eyes. Wavelength other than from the visible region will only be seen through special filters. The visible part lies between the infrared and ultraviolet regions in the electromagnetic spectrum.
Explanation:
The energy level of the visible light is higher than that of the infrared radiations. As the minimum energy required to expel an electron lies in the infrared region, a photon of visible light will definitely be able to do so. The photon of visible light will be able to excite the electron much quicker than that of the infrared region.
Conclusion:
Therefore, a photon of the visible region will be able to excite an electron from the negative hydrogen ion much quickly than by the one lying in the infrared region.
(d)
The reason for the opacity of the photosphere that contains negative hydrogen ions for the visible light, but not for the infrared light. Given that the amount of energy (
(d)
Answer to Problem 33Q
Solution:
The photosphere is opaque (invisible) for the visible light because it is of high energy and gets easily absorbed in order to dislodge electrons. The infrared light carries low energy and does not pass easily through the photosphere; therefore, they are not opaque.
Explanation of Solution
Introduction:
The light that gets absorbed easily through a medium becomes opaque (invisible), but it remains capable enough to excite electrons in the material it passes through. The light that fails to excite electrons from a medium cannot pass through the same.
Explanation:
The energy carried by the infrared radiations is far less than that carried by the ultraviolet and/or the visible light. Higher energy is able to excite the electrons through the photosphere, which is primarily made up of negative hydrogen ions. As the visible light excites electrons, it gets easily absorbed in the photosphere, thus becomes invisible or opaque.
The infrared light of longer wavelength (or less energy) than the one calculated in part (a) will fail to excite the electrons from the photosphere. They will not pass through the photosphere, thus will become visible or opaque to naked eyes.
Conclusion:
Therefore, the infrared light is opaque to the photosphere while visible light is not because the former is of less energy and does not pass through the photosphere while the latter passes through and excites the electrons so as to become invisible.
Want to see more full solutions like this?
Chapter 16 Solutions
Universe
- What is the resistance (in (2) of a 27.5 m long piece of 17 gauge copper wire having a 1.150 mm diameter? 0.445 ΧΩarrow_forwardFind the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring). d. Ag dFe = 2.47 ×arrow_forwardFind the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring). d Ag = 2.51 dFe ×arrow_forward
- Show that the units 1 v2/Q = 1 W, as implied by the equation P = V²/R. Starting with the equation P = V²/R, we can get an expression for a watt in terms of voltage and resistance. The units for voltage, V, are equivalent to [? v2 v2 A, are equivalent to J/C ✓ X . Therefore, 1 = 1 = 1 A V1 J/s Ω V-A X = 1 W. . The units for resistance, Q, are equivalent to ? The units for current,arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill