Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
4th Edition
ISBN: 9780132273244
Author: Doug Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 31P
(a) Calculate the maximum displacement of air molecules when a 330-Hz sound wave passes whose intensity is at the threshold of pain (120 dB). (b) What is the pressure amplitude in this wave?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
Ch. 16.1 - Prob. 1AECh. 16.3 - If an increase of 3 dB means twice as intense,...Ch. 16.3 - Trumpet players. A trumpeter plays at a sound...Ch. 16.4 - Two strings have the same length and tension, but...Ch. 16.7 - Prob. 1GECh. 16.7 - How fast would a source have to approach an...Ch. 16 - What is the evidence that sound travels as a wave?Ch. 16 - What is the evidence that sound is a form of...Ch. 16 - Children sometimes play with a homemade telephone...Ch. 16 - When a sound wave passes from air into water, do...
Ch. 16 - What evidence can you give that the speed of sound...Ch. 16 - The voice of a person who has inhaled helium...Ch. 16 - What is the main reason the speed of sound in...Ch. 16 - Two tuning forks oscillate with the same...Ch. 16 - How will the air temperature in a room affect the...Ch. 16 - Explain how a lube might be used as a filler to...Ch. 16 - Prob. 11QCh. 16 - A noisy truck approaches you from behind a...Ch. 16 - Standing waves can he said to be due to...Ch. 16 - In Fig. 16-15, if the frequency of the speakers is...Ch. 16 - Traditional methods of protecting the hearing of...Ch. 16 - Consider the two waves shown in Fig. 1630. Each...Ch. 16 - Is there a Doppler shift if the source and...Ch. 16 - If a wind is blowing, will this alter the...Ch. 16 - Figure 1631 shows various positions of a child on...Ch. 16 - Approximately how many octaves are there in the...Ch. 16 - At a race track, you can estimate the speed of...Ch. 16 - (I) A hiker determines the length of a lake by...Ch. 16 - Prob. 2PCh. 16 - (I) (a) Calculate the wavelengths in air at 20C...Ch. 16 - (I) On a warm summer day (27C), it takes 4.70 s...Ch. 16 - (II) A motion sensor can accurately measure the...Ch. 16 - Prob. 6PCh. 16 - A stone is dropped from the top of a cliff. The...Ch. 16 - A person, with his ear to the ground, sees a huge...Ch. 16 - Prob. 9PCh. 16 - (I) The pressure amplitude of a sound wave in air...Ch. 16 - (I) What must be the pressure amplitude in a sound...Ch. 16 - (II) Write an expression that describes the...Ch. 16 - (II) The pressure variation in a sound wave is...Ch. 16 - What is the intensity of a sound at the pain level...Ch. 16 - (I) What is the sound level of a sound whose...Ch. 16 - (I) What are the lowest and highest frequencies...Ch. 16 - (II) Your auditory system can accommodate a huge...Ch. 16 - (II) You are trying to decide between two new...Ch. 16 - (II) At a painfully loud concert, a 120-dB sound...Ch. 16 - (II) If two firecrackers produce a sound level of...Ch. 16 - A person standing a certain distance from an...Ch. 16 - (II) A cassette player is said to have a...Ch. 16 - (II) (a) Estimate the power output of sound from a...Ch. 16 - (II) A 50-dB sound wave strikes an eardrum whose...Ch. 16 - Expensive amplifier A is rated at 250 W, while the...Ch. 16 - (II) At a rock concert, a dB meter registered...Ch. 16 - A fireworks shell explodes 100m above the ground,...Ch. 16 - If the amplitude of a sound wave is made 2.5 times...Ch. 16 - Two sound waves have equal displacement...Ch. 16 - What would be the sound level (in dB) of a sound...Ch. 16 - (a) Calculate the maximum displacement of air...Ch. 16 - A jet plane emits 5.0 105 J of sound energy per...Ch. 16 - What would you estimate for the length of a bass...Ch. 16 - The A string on a violin has a fundamental...Ch. 16 - An organ pipe is 124 cm long. Determine the...Ch. 16 - (a) What resonant frequency would you expect from,...Ch. 16 - Prob. 37PCh. 16 - Prob. 38PCh. 16 - An unfingered guitar string is 0.73m long and is...Ch. 16 - (II) (a) Determine the length of an open organ...Ch. 16 - Prob. 41PCh. 16 - Prob. 42PCh. 16 - Prob. 43PCh. 16 - (II) A particular organ pipe can resonate at 264...Ch. 16 - A uniform narrow tube 1.80m long is open at both...Ch. 16 - (II) A pipe in air at 23.0C is to be designed to...Ch. 16 - How many overtones are present within the audible...Ch. 16 - Prob. 49PCh. 16 - (II) In a quartz oscillator, used as a stable...Ch. 16 - The human car canal is approximately 2.5 cm long....Ch. 16 - (II) Approximately what are the intensities of the...Ch. 16 - A piano tuner hears one beat every 2.0s when...Ch. 16 - What is the beat frequency if middle C (262 Hz)...Ch. 16 - A guitar string produces 4 beats/s when sounded...Ch. 16 - (II) The two sources of sound in Fig. 1615 face...Ch. 16 - Prob. 57PCh. 16 - (II) Two loudspeakers are placed 3.00 m apart, as...Ch. 16 - Two piano strings are supposed to be vibrating at...Ch. 16 - A source emits sound of wavelengths 2.64 m and...Ch. 16 - (I)The predominant frequency of a certain fire...Ch. 16 - A bat at rest sends out ultrasonic sound waves at...Ch. 16 - (II) (a) Compare the shift in frequency if a...Ch. 16 - Two automobiles are equipped with the same single...Ch. 16 - A police car sounding a siren with a frequency of...Ch. 16 - (II) A bat flies toward a wall at a speed of 7.0...Ch. 16 - In one of the original Doppler experiments, a tuba...Ch. 16 - (II) If a speaker mounted on an automobile...Ch. 16 - A wave on the surface of the ocean with wavelength...Ch. 16 - A factory whistle emits sound of frequency 720 Hz....Ch. 16 - The Doppler effect using ultrasonic waves of...Ch. 16 - (II) An airplane travels at Mach 2.0 where the...Ch. 16 - A space probe enters the thin atmosphere of a...Ch. 16 - A meteorite traveling 8800 m/s strikes the ocean....Ch. 16 - Show that the angle a sonic boom makes with the...Ch. 16 - Prob. 76PCh. 16 - (II) A supersonic jet traveling at Mach 2.2 at an...Ch. 16 - A fish finder uses a sonar device that sends...Ch. 16 - A science museum has a display called a sewer pipe...Ch. 16 - A single mosquito 5.0 m from a person makes a...Ch. 16 - What is the resultant sound level when an 82-dB...Ch. 16 - The sound level 9.00 m from a loudspeaker, placed...Ch. 16 - A stereo amplifier is rated at 175 W output at...Ch. 16 - Workers around jet aircraft typically wear...Ch. 16 - In audio and communications systems, the gain, ,...Ch. 16 - For large concerts, loudspeakers are sometimes...Ch. 16 - Manufacturers typically offer a particular guitar...Ch. 16 - The high-E string on a guitar is fixed at both...Ch. 16 - Prob. 89GPCh. 16 - Prob. 90GPCh. 16 - Two identical tubes, each closed at one end, have...Ch. 16 - Prob. 92GPCh. 16 - The diameter D of a tube does affect the node at...Ch. 16 - A person hears a pure tone in the 500 to 1000-Hz...Ch. 16 - The frequency of a steam train whistle as it...Ch. 16 - Two trains emit 516-Hz whistles. One train is...Ch. 16 - Two loudspeakers are at opposite ends of a...Ch. 16 - Two open organ pipes, sounding together, produce a...Ch. 16 - A bat flies toward a moth at speed 7.5 m/s while...Ch. 16 - If the velocity of blood flow in the aorta is...Ch. 16 - A bat emits a series of high-frequency sound...Ch. 16 - Prob. 102GPCh. 16 - Two loudspeakers face each other at opposite ends...Ch. 16 - Prob. 104GPCh. 16 - The wake of a speedboat is 15 in a lake where the...Ch. 16 - Prob. 106GPCh. 16 - Prob. 107GPCh. 16 - Prob. 108GP
Additional Science Textbook Solutions
Find more solutions based on key concepts
One isomer of methamphetamine is the addictive illegal drug known as crank. Another isomer is a medicine for si...
Campbell Essential Biology (7th Edition)
Why is living epithelial tissue limited to a certain thickness?
Human Anatomy & Physiology (2nd Edition)
Why are BSL-4 suits pressurized? Why not just wear tough regular suits?
Microbiology with Diseases by Body System (5th Edition)
How Would the experiments result charge if oxygen (O2) were induced in the spark chamber?
Biology: Life on Earth with Physiology (11th Edition)
Carefully examine the common sedimentary rocks shown In Figure 2.13. Use these photos and the preceding discuss...
Applications and Investigations in Earth Science (9th Edition)
Give at least three examples of key ecosystem services that nature provides for people.
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A sound wave in air has a pressure amplitude equal to 4.00 103 Pa. Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.arrow_forwardSome studies suggest that the upper frequency limit of hearing is determined by the diameter of the eardrum. The wavelength of the sound wave and the diameter of the eardrum are approximately equal at this upper limit. If the relationship holds exactly, what is the diameter of the eardrum of a person capable of hearing 20 000 Hz? (Assume a body temperature of 37.0C.)arrow_forwardA sound wave of a frequency of 2.00 kHz is produced by a string oscillating in the n=6 mode. The linear mass density of the string is =0.0065 kg/m and the length of the string is 1.50 m. What is the tension in the string?arrow_forward
- A bat sends of a sound wave 100 kHz and the sound waves travel through air at a speed of v=343 m/s. (a) If the maximum pressure difference is 1.30 Pa, what is a wave function that would model the sound wave, assuming the wave is sinusoidal? (Assume the phase shift is zero.) (b) What are the period and wavelength of the sound wave?arrow_forwardA pipe is observed to have a fundamental frequency of 345 Hz. Assume the pipe is filled with air (v = 343 m/s). What is the length of the pipe if the pipe is a. closed at one end and b. open at both ends?arrow_forwardA sound wave traveling in air has a pressure amplitude of 0.5 Pa. What is the intensity of the wave?arrow_forward
- The area of a typical eardrum is about 5.00 X 10-5 m2. (a) (Calculate the average sound power incident on an eardrum at the threshold of pain, which corresponds to an intensity of 1.00 W/m2. (b) How much energy is transferred to the eardrum exposed to this sound lor 1.00 mill?arrow_forwardTwo sinusoidal waves are moving through a medium in the positive x-direction, both having amplitudes of 7.00 cm, a wave number of k=3.00 m-1, an angular frequency of =2.50 s-1, and a period of 6.00 s, but one has a phase shift of an angle =12 rad. What is the height of the resultant wave at a time t=2.00 s and a position x=0.53 m?arrow_forwardSuppose that the sound level from a source is 75 dB and then drops to 52 dB, with a frequency of 600 Hz. Determine the (a) initial and (b) final sound intensities and the (c) initial and (d) final sound wave amplitudes. The air temperature is TC=24.00C and the air density is =1.184kg/m3 .arrow_forward
- Two sinusoidal waves are moving through a medium in the same direction, both having amplitudes of 3.00 cm, a wavelength of 5.20 m, and a period of 6.52 s, but one has a phase shift of an angle . What is the phase shift if the resultant wave has an amplitude of 5.00 cm? [Hint: Use the trig identity sinu+sinv=2sin(u+v2)cos(uv2)arrow_forwardA nylon guitar string is fixed between two lab posts 2.00 m apart. The string has a linear mass density of =7.20 g/m and is placed under a tension of 160.00 N. The string is placed next to a tube, open at both ends, of length L. The string is plucked and the tube resonates at the n=3 mode. The speed of sound is 343 m/s. What is the length of the tube?arrow_forwardWrite an expression that describes the pressure variation as a function of position and time for a sinusoidal sound wave in air. Assume the speed of sound is 343 m/s, = 0.100 m, and Pmax = 0.200 Pa.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY