
Concept explainers
(a)
The position of first bright fringe.
(a)

Answer to Problem 2SP
The position of first bright fringe is 17.1 mm away from the center at each side.
Explanation of Solution
Given info:
Write an expression for condition of maxima.
Here,
Substitute
Thus, the position of first bright fringe is 17.1 mm away from the center at each side.
Conclusion:
The position of first bright fringe is 17.1 mm away from the center at each side.
(b)
The position of second bright fringe.
(b)

Answer to Problem 2SP
The position of second bright fringe is 34.3 mm away from the center at each side.
Explanation of Solution
Given info:
Wavelength of the light is
Write an expression for condition of maxima.
Here,
Substitute
Thus, the position of second bright fringe is 34.3 mm away from the center at each side.
Conclusion:
The position of second bright fringe is 34.3 mm away from the center at each side.
(c)
The position of first dark bright fringe.
(c)

Answer to Problem 2SP
The position of first dark fringe is 25.7 mm away from the center at each side.
Explanation of Solution
Given info:
Wavelength of the light is
Write an expression for condition of minima.
Here,
Substitute
Thus, the position of first dark fringe is 25.7 mm away from the center at each side.
Conclusion:
The position of first dark fringe is 25.7 mm away from the center at each side.
(d)
Sketch the diffraction pattern and mark the position of the fringes.
(d)

Answer to Problem 2SP
The diffraction pattern is given in figure 1.
Explanation of Solution
Following figure gives the diffraction pattern.
Figure 1
Here, the first, second and third order bright fringes will appear at distance of 17.1 mm, 34.3 mm and 51.4 mm from center respectively at each side of the central maxima. The dark fringes of order 1, 2 and 3 will form distances 25.7 mm, 42.8 mm and 60.0 mm respectively.
Conclusion:
The diffraction pattern is given in figure 1.
Want to see more full solutions like this?
Chapter 16 Solutions
Physics of Everyday Phenomena
- Four capacitors are connected as shown in the figure below. (Let C = 12.0 µF.) A circuit consists of four capacitors. It begins at point a before the wire splits in two directions. On the upper split, there is a capacitor C followed by a 3.00 µF capacitor. On the lower split, there is a 6.00 µF capacitor. The two splits reconnect and are followed by a 20.0 µF capacitor, which is then followed by point b. (a) Find the equivalent capacitance between points a and b. µF(b) Calculate the charge on each capacitor, taking ΔVab = 16.0 V. 20.0 µF capacitor µC 6.00 µF capacitor µC 3.00 µF capacitor µC capacitor C µCarrow_forwardTwo conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forwardPlease see the attached image and answer the set of questions with proof.arrow_forward
- How, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forwardA spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forwardSketch a sign wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forward
- Sketch a sine wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forwardThe drawing shows two long, straight wires that are suspended from the ceiling. The mass per unit length of each wire is 0.050 kg/m. Each of the four strings suspending the wires has a length of 1.2 m. When the wires carry identical currents in opposite directions, the angle between the strings holding the two wires is 20°. (a) Draw the free-body diagram showing the forces that act on the right wire with respect to the x axis. Account for each of the strings separately. (b) What is the current in each wire? 1.2 m 20° I -20° 1.2 marrow_forwardplease solve thisarrow_forward
- please solve everything in detailarrow_forward6). What is the magnitude of the potential difference across the 20-02 resistor? 10 Ω 11 V - -Imm 20 Ω 10 Ω 5.00 10 Ω a. 3.2 V b. 7.8 V C. 11 V d. 5.0 V e. 8.6 Varrow_forward2). How much energy is stored in the 50-μF capacitor when Va - V₁ = 22V? 25 µF b 25 µF 50 µFarrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





