Concept explainers
23. Time Required to Go from an Island to a Town An island is 2 miles from the nearest point P on a straight shoreline. A town is 12 miles down the shore from P. See the illustration.
(a) If a person can row a boat at an average speed of 3 miles per hour and the same person can walk 5 miles per hour, build a model that expresses the time T that it takes to go from the island to town as a function of the distance X from P to where the person lands the boat.
(b) What is the domain of Τ?
(c) How long will it take to travel from the island to town if the person lands the boat 4 miles from P?
(d) How long will it take if the person lands the boat 8 miles from Ρ?
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (4th Edition)
- Given ƒ = (10, -10) and q = (-8, −7), find ||ƒ— q|| and dƒ-9. Give EXACT answers. You do NOT have to simplify your radicals!arrow_forwardFind a vector (u) with magnitude 7 in the direction of v = (2,4) Give EXACT answer. You do NOT have to simplify your radicals!arrow_forwardGiven g = (-5, 10) and u = (5, 2), find -4ğ - 6.arrow_forward
- Given the vector v→=⟨3,-5⟩, find the magnitude and angle in which the vector points (measured in radians counterclockwise from the positive x-axis and 0≤θ<2π). Round each decimal number to two places.arrow_forwardplease include radicals in answerarrow_forwardFind the arc length of the curve below on the given interval by integrating with respect to x. 4 4 + 1 8x 2 [1,3]arrow_forward
- Given that the outward flux of a vector field through the sphere of radius r centered at the origin is 5(1 cos(2r)) sin(r), and D is the value of the divergence of the vector field at the origin, the value of sin (2D) is -0.998 0.616 0.963 0.486 0.835 -0.070 -0.668 -0.129arrow_forward10 The hypotenuse of a right triangle has one end at the origin and one end on the curve y = Express the area of the triangle as a function of x. A(x) =arrow_forwardIn Problems 17-26, solve the initial value problem. 17. dy = (1+ y²) tan x, y(0) = √√3arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage