Concept explainers
(a1)
To determine: The point where citric acid cycle is blocked.
Introduction:
The citric acid cycle is an aerobic respiration which produces excess amount of energy. The intermediate products of the citric acid cycle connect the
(a2)
To determine: The reason of accumulation of citrate and depletion of intermediates of other cycles.
Introduction:
The citric acid cycle is an aerobic respiration which produces excess amount of energy. The intermediate products of the citric acid cycle connect the metabolism of proteins, carbohydrates and fats. In the cycle, metabolism of acetyl CoA produces carbon dioxide and water.
(b1)
To determine: The structure of end product of fluoroacetate metabolism.
Introduction:
Metabolism is a chain of
(b2)
To determine: The reason for blockage of citric acid cycle due to the end product.
Introduction:
Metabolism is a chain of chemical reactions to break down the substances in order to generate new substance. In cellular metabolism, fluoroacetate combines with CoA to form fluoroacetyl CoA. It can replace acetyl CoA in the citric acid cycle and reacts with enzyme citrate synthase to produce fluorocitrate.
(b3)
To determine: The way to overcome the inhibition.
Introduction:
Metabolism is a chain of chemical reactions to break down the substances in order to generate new substance. In cellular metabolism, fluoroacetate combines with CoA to form fluoroacetyl CoA. It can replace acetyl CoA in the citric acid cycle and reacts with enzyme citrate synthase to produce fluorocitrate.
(c1)
To determine: The reason for decrement in glucose uptake and glycolysis in the experiment of heart perfusion.
Introduction:
Glycolysis is an aerobic respiration process which takes place to produce large amount of energy. Glycolysis process involves the continuous use of enzymes. Enzymes take part in the conversion of one cycle intermediate into another intermediate.
(c2)
To determine: The reason for accumulation of hexose monophosphate.
Introduction:
Glycolysis is an aerobic respiration process which takes place to produce large amount of energy. Glycolysis process involves the continuous use of enzymes. Enzymes take part in the conversion of one cycle intermediate into another intermediate. Any kind of inhibition in the enzymatic activity can cause decrement in the glycolysis cycle.
(d)
To describe: The reason for fatal property of fluoroacetate
Introduction:
Fluoroacetate is used as a rodenticide. It affects mammals and birds. The property of fluoroacetate is poisonous for cells because it is analog to citrate and is an inhibitor of citrate synthase enzyme. Inhibition of the enzymatic activity stops the cycle to proceed further and the cells lose their metabolic activity.
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
SaplingPlus for Lehninger Principles of Biochemistry (Six-Month Access)
- Biochemistry Please help. Thank you When carbamyl phosphate is joined to L-ornathine, where does the energy for the reaction come from?arrow_forwardBiochemistry Question Please help. Thank you What is the function of glutamate dehydrogenase?arrow_forwardBiochemistry Question Please help. Thank you How and why does a high protein diet affect the enzymes of the urea cycle?arrow_forward
- Biochemistry What is the importance of the glucose-alanine cycle?arrow_forwardBiochemistry Assuming 2.5 molecules of ATP per oxidation of NADH/(H+) and 1.5molecules of ATP per oxidation of FADH2, how many ATP are produced per molecule of pyruvate? Please help. Thank youarrow_forward1. How would you explain the term ‘good food’? 2. How would you define Nutrition? 3. Nutrients are generally categorised into two forms. Discuss.arrow_forward
- Biochemistry Question. Please help solve. Thank you! Based upon knowledge of oxidation of bioorganic compounds and howmuch energy is released during their oxidation, rank the following, from most to least, with respect to how much energy would be produced from each during their oxidation. Explain your placement for each one.arrow_forwardBiochemistry Question.For the metabolism of amino acids what is the first step for theirbreakdown? Why is it necessary for this breakdown product to be transported to the liver? For the catabolism of the carbon backbone of these amino acids, there are 7 entry points into the “standard” metabolic pathways. List these 7 entry points and which amino acids are metabolized to these entry points. Please help. Thank you!arrow_forwardBiochemistry Question. Please help. Thank you. You are studying pyruvate utilization in mammals for ATP production under aerobic conditions and have synthesized pyruvate with Carbon #1 labelled with radioactive C14. After only one complete cycle of the TCA cycle, which of the TCA cycle intermediates would be labeled with C14? Explain your answer. Interestingly, you find C14 being excreted in the urine. How does it get there?arrow_forward
- Biochemistry question. Please help with. Thanks in advance For each of the enzymes listed below, explain what the enzyme does including function, names (or structures) of the substrate and products and the pathway(s) (if applicable) it is/are found in. (a) ATP synthetase (b) succinate dehydrogenase (c) isocitrate lyase (d) acetyl CoA carboxylase (e) isocitrate dehydrogenase (f) malate dehydrogenasearrow_forwardDraw and name each alcohol and classify it as primary, secondary, or tertiary. Explain your answer thoroughly.arrow_forwardDraw the product of each reaction. If there are multiple products, draw only the major product. Explain your answer thoroughly.arrow_forward
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON