Linear Algebra with Applications (9th Edition) (Featured Titles for Linear Algebra (Introductory))
9th Edition
ISBN: 9780321962218
Author: Steven J. Leon
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 1.6, Problem 21E
To determine
To prove: if B and Care
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Co Given
show that
Solution
Take home
Су-15
1994
+19
09/2
4
=a
log
суто
-
1092
ж
= a-1
2+1+8
AI | SHOT ON S4
INFINIX CAMERA
a
Question 7. If det d e f
ghi
V3
= 2. Find det
-1
2
Question 8. Let A = 1
4
5
0
3
2.
1 Find adj (A)
2 Find det (A)
3
Find A-1
2g 2h 2i
-e-f
-d
273
2a 2b 2c
Question 1. Solve the system
-
x1 x2 + 3x3 + 2x4
-x1 + x22x3 + x4
2x12x2+7x3+7x4
Question 2. Consider the system
= 1
=-2
= 1
3x1 - x2 + ax3
= 1
x1 + 3x2 + 2x3
x12x2+2x3
= -b
= 4
1 For what values of a, b will the system be inconsistent?
2 For what values of a, b will the system have only one solution?
For what values of a, b will the saystem have infinitely many solutions?
Chapter 1 Solutions
Linear Algebra with Applications (9th Edition) (Featured Titles for Linear Algebra (Introductory))
Ch. 1.1 - Use back substitution to solve each of the...Ch. 1.1 - Write out the coefficient matrix for each of the...Ch. 1.1 - In each of the following systems, interpret each...Ch. 1.1 - Write an augmented matrix for each of the systems...Ch. 1.1 - Write out the system of equations that corresponds...Ch. 1.1 - Solve each of the following systems. (a)...Ch. 1.1 - The two systems 2x1+x2=34x1+3x2=5 and...Ch. 1.1 - Solve the two systems...Ch. 1.1 - Given a System of the form m1x1+x2=b1m2x1+x2=b2...Ch. 1.1 - Consider a system of the form...
Ch. 1.1 - Give a geometrical interpretation of a linear...Ch. 1.2 - Which of the matrices that follow are in row...Ch. 1.2 - The augmented matrices that follow are in row...Ch. 1.2 - The augmented matrices that follow are in reduced...Ch. 1.2 - For each of the systems in Exercise 3, make a list...Ch. 1.2 - For each of the systems of equations that follow,...Ch. 1.2 - Use GaussJordan reduction to solve each of the...Ch. 1.2 - Give a geometric explanation of why a homogeneous...Ch. 1.2 - Consider a linear system whose augmented matrix is...Ch. 1.2 - Consider a linear system whose augmented matrix is...Ch. 1.2 - Consider a linear system whose augmented matrix is...Ch. 1.2 - Given the linear systems...Ch. 1.2 - Given the linear systems (i)...Ch. 1.2 - Given a homogeneous system of linear equations, if...Ch. 1.2 - Given a nonhomogeneous system of linear equations,...Ch. 1.2 - Determine the values ofx1,x2,x3,x4for the...Ch. 1.2 - Prob. 16ECh. 1.2 - Prob. 17ECh. 1.2 - In Application 3 the solution (6, 6, 6, 1) was...Ch. 1.2 - Prob. 19ECh. 1.2 - Nitric acid is prepared commercially by a series...Ch. 1.2 - Prob. 21ECh. 1.2 - Prob. 22ECh. 1.3 - If A=[314201122]andB=[102311241] compute (a) 2A...Ch. 1.3 - For each of the pairs of matrices that follow,...Ch. 1.3 - For which of the pairs in Exercise 2 is it...Ch. 1.3 - Write each of the following systems of equations...Ch. 1.3 - If A=[341127] verify that (a) 5A=3A+2A (b)...Ch. 1.3 - If A=[ 4 2 1 3 6 5 ]andB=[ 1 2 3 2 2 4 ] verify...Ch. 1.3 - If A=[216324]andB=[2416] verify that (a)...Ch. 1.3 - If A=[ 2 1 4 3 ],B=[ 2 0 1 4 ],C=[ 3 2 1 1 ]...Ch. 1.3 - Let A=[ 1 1 2 2 ],b=[40],c=[32] (a) Write b as a...Ch. 1.3 - For each of the choices of A and b that follow,...Ch. 1.3 - Let Abe a 53 matrix. If b=a1+a2=a2+a3 then what...Ch. 1.3 - Let Abe a 34 matrix. If b=a1+a2+a3+a4 then what...Ch. 1.3 - Let Ax=b be a linear system whose augmented matrix...Ch. 1.3 - Prob. 14ECh. 1.3 - Let A be an mn matrix. Explain why the matrix...Ch. 1.3 - A matrix A is said to be skew symmetric if AT=A ....Ch. 1.3 - In Application 3, suppose that we are searching...Ch. 1.3 - Let A be a 22 matrix with a110 and let =a21/a11 ....Ch. 1.4 - Explain why each of the following algebraic rules...Ch. 1.4 - Will the rules in Exercise 1 work if a is replaced...Ch. 1.4 - Find nonzero 22 matrices A and B such that AB=0 .Ch. 1.4 - Find nonzero matrices A, B, and C such that...Ch. 1.4 - The matrix A=[1111] has the property that A2=O ....Ch. 1.4 - Prove the associative law of multiplication for 22...Ch. 1.4 - Let A=[ 1 2 1 2 1 2 1 2] Compute A2 and A3 . What...Ch. 1.4 - Let A=[ 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1...Ch. 1.4 - Let A=[0100001000010000] Show that An=O for n4 .Ch. 1.4 - Let A and B be symmetric nn matrices. For each of...Ch. 1.4 - Let C be nonsymmetric nn matrix. For each of the...Ch. 1.4 - Let A=[ a 11 a 12 a 21 a 22] Show that if...Ch. 1.4 - Use the result from Exercise 12 to find the...Ch. 1.4 - Let A and B are nn matrices. Show that if...Ch. 1.4 - Let A be a nonsingular matrix. Show that A1 is...Ch. 1.4 - Prove that if A is nonsingular then AT is...Ch. 1.4 - Let A be an nn matrix and let x and y be vectors...Ch. 1.4 - Let A be a nonsingular nn matrix. Use mathematical...Ch. 1.4 - Let A be an nn matrix. Show that if A2=O , then IA...Ch. 1.4 - Let A be an nn matrix. Show that if Ak+1=O , then...Ch. 1.4 - Given R=[cossinsincos] Show that R is nonsingular...Ch. 1.4 - An nn matrix A is said to be an involutionifA2=I ....Ch. 1.4 - Let u be a unity vector in n (i.e. uTu=1 ) and let...Ch. 1.4 - A matrix A is said to be an idempotentif A2=A ....Ch. 1.4 - Prob. 25ECh. 1.4 - Let D be an nn diagonal matrix whose diagonal...Ch. 1.4 - Let Abe an involution matrix and let...Ch. 1.4 - Let A be an mn matrix. Show that ATA and AAT are...Ch. 1.4 - Let A and B be symmetric nn matrices. Prove that...Ch. 1.4 - Let Abe an nn matrix and let B=A+ATandC=AAT (a)...Ch. 1.4 - In Application 1, how many married women and how...Ch. 1.4 - Consider the matrix A=[ 0 1 0 1 1 1 0 1 1 0 0 1 0...Ch. 1.4 - Consider the graph (a) Determine the adjacency...Ch. 1.4 - If Ax=Bx for some nonzero vector x, then the...Ch. 1.4 - If A and B are singular nn matrices, then A+B is...Ch. 1.4 - If A and B are nonsingular matrices, then (AB)T is...Ch. 1.5 - Which of the matrices that follow are elementary...Ch. 1.5 - Find the inverse of each matrix in Exercise 1. For...Ch. 1.5 - Prob. 3ECh. 1.5 - Prob. 4ECh. 1.5 - Let A=[ 1 2 1 2 1 0 4 3 2 ],B=[ 1 2 2 2 1 2 4 3 6...Ch. 1.5 - Prob. 6ECh. 1.5 - Let A=[2164] (a) Express A1 as a product of...Ch. 1.5 - Compute the LU factorization of each of the...Ch. 1.5 - Let A=[ 1 3 2 0 3 2 1 4 3 ] (a) Verify that A1=[ 1...Ch. 1.5 - Find the inverse of each of the following...Ch. 1.5 - Prob. 11ECh. 1.5 - Let A=[ 5 3 3 2 ],B=[ 6 2 2 4 ],C=[ 4 6 2 3 ]...Ch. 1.5 - Is the transpose of an elementary matrix an...Ch. 1.5 - Let U and R bennupper triangular matrices and...Ch. 1.5 - Let A be a 33 matrix and suppose that 2a1+a24a3=0...Ch. 1.5 - Prob. 16ECh. 1.5 - Let A and B be nn matrices and let C=AB . Show...Ch. 1.5 - Prob. 18ECh. 1.5 - Let U be an nn upper triangular matrix with...Ch. 1.5 - Prob. 20ECh. 1.5 - Prob. 21ECh. 1.5 - Show that if A is a symmetric nonsingular matrix...Ch. 1.5 - Prove that if A is a row equivalent to B then B is...Ch. 1.5 - Prob. 24ECh. 1.5 - Prob. 25ECh. 1.5 - Prove that B is row equivalent to A if and only if...Ch. 1.5 - Is it possible for a singular matrix B to be row...Ch. 1.5 - Prob. 28ECh. 1.5 - Prob. 29ECh. 1.5 - Prob. 30ECh. 1.5 - Prob. 31ECh. 1.5 - Prob. 32ECh. 1.6 - Let A be a nonsingular nn matrix. Perform the...Ch. 1.6 - Prob. 2ECh. 1.6 - Let A=[ 1 2 1 1 ]andB=[ 2 1 1 3 ] (a) Calculate...Ch. 1.6 - Let I=[ 1 0 0 1 ],E=[ 0 1 1 0 ],O=[ 0 0 0 0 ] C=[...Ch. 1.6 - Perform each of the following block...Ch. 1.6 - Given X=[ 2 4 1 2 5 3 ],Y=[ 1 2 2 3 4 1 ] (a)...Ch. 1.6 - Let A=[ A 11 A 21 A 12 A 22 ]andAT=[ A 11 T A 12 T...Ch. 1.6 - Let Abe an mn matrix, X and nr matrix, and B an mn...Ch. 1.6 - Prob. 9ECh. 1.6 - Prob. 10ECh. 1.6 - Prob. 11ECh. 1.6 - Let A and B be nn matrices and let M be a block...Ch. 1.6 - Prob. 13ECh. 1.6 - Prob. 14ECh. 1.6 - Prob. 15ECh. 1.6 - Prob. 16ECh. 1.6 - Prob. 17ECh. 1.6 - Let A, B, L, M, S, and T be nn matrices with A, B,...Ch. 1.6 - Let Abe an nn matrix and xn . (a) A scalar c can...Ch. 1.6 - If A is an nn matrix with the property that Ax=0...Ch. 1.6 - Prob. 21ECh. 1.6 - Prob. 22ECh. 1 - Use MATLAB to generate random 44 matrices A and B....Ch. 1 - Set n=200 and generate an nn matrix and two...Ch. 1 - Set A=floor(10*rand(6)) . By construction, the...Ch. 1 - Construct a mainx as follows: Set...Ch. 1 - Generate a matrix A by setting A = floor(10 *...Ch. 1 - Consider the graph (a) Determine the adjacency...Ch. 1 - In Application 1 of Section 1.4, the numbers of...Ch. 1 - The following table describes a seven-stage model...Ch. 1 - Set A = magic(8) and then compute its reduced row...Ch. 1 - Set B=[1,1;1,1] and A=[zeros(2),eye(2);eye(2),B]...Ch. 1 - The MATLAB commands A = floor(10 * rand((6)), B=AA...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - Find all solutions of the linear system...Ch. 1 - (a) A linear equation in two unknowns corresponds...Ch. 1 - LetAx=bbe a system of n linear equations in n...Ch. 1 - LetAbeamatrix of the form A=[22] where and are...Ch. 1 - Let A=[213427135],B=[213135427],C=[013027535] Find...Ch. 1 - Let A be a 33 matrix and let b=3a1+a2+4a3 Will the...Ch. 1 - Let A be a 33 matrix and suppose that a13a2+2a3=0...Ch. 1 - Given the vector x0=[11] is it possible to find 22...Ch. 1 - Let A and B be symmetric nn matrices and let C=AB...Ch. 1 - Let E and F be nn elementary matrices and let C=EF...Ch. 1 - Given A=[IOOOIOOBI] where all the submatrices are...Ch. 1 - LetA and B be 1010 matrices that are...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Question 5. Let A, B, C ben x n-matrices, S is nonsigular. If A = S-1 BS, show that det (A) = det (B) Question 6. For what values of k is the matrix A = (2- k -1 -1 2) singular? karrow_forward1 4 5 Question 3. Find A-1 (if exists), where A = -3 -1 -2 2 3 4 Question 4. State 4 equivalent conditions for a matrix A to be nonsingulararrow_forwardHow long is a guy wire reaching from the top of a 15-foot pole to a point on the ground 9-feet from the pole? Question content area bottom Part 1 The guy wire is exactly feet long. (Type an exact answer, using radicals as needed.) Part 2 The guy wire is approximatelyfeet long. (Round to the nearest thousandth.)arrow_forward
- Question 6 Not yet answered Marked out of 5.00 Flag question = If (4,6,-11) and (-12,-16,4), = Compute the cross product vx w karrow_forwardConsider the following vector field v^-> (x,y): v^->(x,y)=2yi−xj What is the magnitude of the vector v⃗ located in point (13,9)? [Provide your answer as an integer number (no fraction). For a decimal number, round your answer to 2 decimal places]arrow_forwardQuestion 4 Find the value of the first element for the first row of the inverse matrix of matrix B. 3 Not yet answered B = Marked out of 5.00 · (³ ;) Flag question 7 [Provide your answer as an integer number (no fraction). For a decimal number, round your answer to 2 decimal places] Answer:arrow_forward
- Question 2 Not yet answered Multiply the following Matrices together: [77-4 A = 36 Marked out of -5 -5 5.00 B = 3 5 Flag question -6 -7 ABarrow_forwardAssume {u1, U2, u3, u4} does not span R³. Select the best statement. A. {u1, U2, u3} spans R³ if u̸4 is a linear combination of other vectors in the set. B. We do not have sufficient information to determine whether {u₁, u2, u3} spans R³. C. {U1, U2, u3} spans R³ if u̸4 is a scalar multiple of another vector in the set. D. {u1, U2, u3} cannot span R³. E. {U1, U2, u3} spans R³ if u̸4 is the zero vector. F. none of the abovearrow_forwardSelect the best statement. A. If a set of vectors includes the zero vector 0, then the set of vectors can span R^ as long as the other vectors are distinct. n B. If a set of vectors includes the zero vector 0, then the set of vectors spans R precisely when the set with 0 excluded spans Rª. ○ C. If a set of vectors includes the zero vector 0, then the set of vectors can span Rn as long as it contains n vectors. ○ D. If a set of vectors includes the zero vector 0, then there is no reasonable way to determine if the set of vectors spans Rn. E. If a set of vectors includes the zero vector 0, then the set of vectors cannot span Rn. F. none of the abovearrow_forward
- Which of the following sets of vectors are linearly independent? (Check the boxes for linearly independent sets.) ☐ A. { 7 4 3 13 -9 8 -17 7 ☐ B. 0 -8 3 ☐ C. 0 ☐ D. -5 ☐ E. 3 ☐ F. 4 THarrow_forward3 and = 5 3 ---8--8--8 Let = 3 U2 = 1 Select all of the vectors that are in the span of {u₁, u2, u3}. (Check every statement that is correct.) 3 ☐ A. The vector 3 is in the span. -1 3 ☐ B. The vector -5 75°1 is in the span. ГОЛ ☐ C. The vector 0 is in the span. 3 -4 is in the span. OD. The vector 0 3 ☐ E. All vectors in R³ are in the span. 3 F. The vector 9 -4 5 3 is in the span. 0 ☐ G. We cannot tell which vectors are i the span.arrow_forward(20 p) 1. Find a particular solution satisfying the given initial conditions for the third-order homogeneous linear equation given below. (See Section 5.2 in your textbook if you need a review of the subject.) y(3)+2y"-y-2y = 0; y(0) = 1, y'(0) = 2, y"(0) = 0; y₁ = e*, y2 = e¯x, y3 = e−2x (20 p) 2. Find a particular solution satisfying the given initial conditions for the second-order nonhomogeneous linear equation given below. (See Section 5.2 in your textbook if you need a review of the subject.) y"-2y-3y = 6; y(0) = 3, y'(0) = 11 yc = c₁ex + c2e³x; yp = −2 (60 p) 3. Find the general, and if possible, particular solutions of the linear systems of differential equations given below using the eigenvalue-eigenvector method. (See Section 7.3 in your textbook if you need a review of the subject.) = a) x 4x1 + x2, x2 = 6x1-x2 b) x=6x17x2, x2 = x1-2x2 c) x = 9x1+5x2, x2 = −6x1-2x2; x1(0) = 1, x2(0)=0arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningElements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Matrix Operations Full Length; Author: ProfRobBob;https://www.youtube.com/watch?v=K5BLNZw7UeU;License: Standard YouTube License, CC-BY
Intro to Matrices; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=yRwQ7A6jVLk;License: Standard YouTube License, CC-BY