Linear Algebra with Applications (9th Edition) (Featured Titles for Linear Algebra (Introductory))
Linear Algebra with Applications (9th Edition) (Featured Titles for Linear Algebra (Introductory))
9th Edition
ISBN: 9780321962218
Author: Steven J. Leon
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 1, Problem 2CTA

This chapter test consists of true−or−false questions. In each case, answer true if the statement is always true and false otherwise. In the case of a true statement, explain or prose your answer. In the case of a false statement, give an example to show that the statement is not always true. For example, consider the following statements about n × n matrices A and B:

(i) A + B = B + A

(ii) A B = B A

Statement (i) is always true. Explanation: The (i, j) entry of A + B is a i j + b i j and the (i, j) entry of B + A is b i j + a i j . Since a i j + b i j = b i j + a i j for each i and j, it follows that A + B = B + A .

The answer to statement (ii) is false. Although the statement may be true in some cases, it is not always true. To show this, we need only exhibit one instance in which equality fails to hold. For example, if

B = [ 2 3 1 1 ]   and   B = [ 2 3 1 1 ]

then

A B = [ 4 5 7 10 ]   and   B A = [ 11 7 4 3 ]

Then proves that statement (ii) is false.

2. Every homogenous linear system is consistent.

Blurred answer

Chapter 1 Solutions

Linear Algebra with Applications (9th Edition) (Featured Titles for Linear Algebra (Introductory))

Ch. 1.1 - Give a geometrical interpretation of a linear...Ch. 1.2 - Which of the matrices that follow are in row...Ch. 1.2 - The augmented matrices that follow are in row...Ch. 1.2 - The augmented matrices that follow are in reduced...Ch. 1.2 - For each of the systems in Exercise 3, make a list...Ch. 1.2 - For each of the systems of equations that follow,...Ch. 1.2 - Use GaussJordan reduction to solve each of the...Ch. 1.2 - Give a geometric explanation of why a homogeneous...Ch. 1.2 - Consider a linear system whose augmented matrix is...Ch. 1.2 - Consider a linear system whose augmented matrix is...Ch. 1.2 - Consider a linear system whose augmented matrix is...Ch. 1.2 - Given the linear systems...Ch. 1.2 - Given the linear systems (i)...Ch. 1.2 - Given a homogeneous system of linear equations, if...Ch. 1.2 - Given a nonhomogeneous system of linear equations,...Ch. 1.2 - Determine the values ofx1,x2,x3,x4for the...Ch. 1.2 - Prob. 16ECh. 1.2 - Prob. 17ECh. 1.2 - In Application 3 the solution (6, 6, 6, 1) was...Ch. 1.2 - Prob. 19ECh. 1.2 - Nitric acid is prepared commercially by a series...Ch. 1.2 - Prob. 21ECh. 1.2 - Prob. 22ECh. 1.3 - If A=[314201122]andB=[102311241] compute (a) 2A...Ch. 1.3 - For each of the pairs of matrices that follow,...Ch. 1.3 - For which of the pairs in Exercise 2 is it...Ch. 1.3 - Write each of the following systems of equations...Ch. 1.3 - If A=[341127] verify that (a) 5A=3A+2A (b)...Ch. 1.3 - If A=[ 4 2 1 3 6 5 ]andB=[ 1 2 3 2 2 4 ] verify...Ch. 1.3 - If A=[216324]andB=[2416] verify that (a)...Ch. 1.3 - If A=[ 2 1 4 3 ],B=[ 2 0 1 4 ],C=[ 3 2 1 1 ]...Ch. 1.3 - Let A=[ 1 1 2 2 ],b=[40],c=[32] (a) Write b as a...Ch. 1.3 - For each of the choices of A and b that follow,...Ch. 1.3 - Let Abe a 53 matrix. If b=a1+a2=a2+a3 then what...Ch. 1.3 - Let Abe a 34 matrix. If b=a1+a2+a3+a4 then what...Ch. 1.3 - Let Ax=b be a linear system whose augmented matrix...Ch. 1.3 - Prob. 14ECh. 1.3 - Let A be an mn matrix. Explain why the matrix...Ch. 1.3 - A matrix A is said to be skew symmetric if AT=A ....Ch. 1.3 - In Application 3, suppose that we are searching...Ch. 1.3 - Let A be a 22 matrix with a110 and let =a21/a11 ....Ch. 1.4 - Explain why each of the following algebraic rules...Ch. 1.4 - Will the rules in Exercise 1 work if a is replaced...Ch. 1.4 - Find nonzero 22 matrices A and B such that AB=0 .Ch. 1.4 - Find nonzero matrices A, B, and C such that...Ch. 1.4 - The matrix A=[1111] has the property that A2=O ....Ch. 1.4 - Prove the associative law of multiplication for 22...Ch. 1.4 - Let A=[ 1 2 1 2 1 2 1 2] Compute A2 and A3 . What...Ch. 1.4 - Let A=[ 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1...Ch. 1.4 - Let A=[0100001000010000] Show that An=O for n4 .Ch. 1.4 - Let A and B be symmetric nn matrices. For each of...Ch. 1.4 - Let C be nonsymmetric nn matrix. For each of the...Ch. 1.4 - Let A=[ a 11 a 12 a 21 a 22] Show that if...Ch. 1.4 - Use the result from Exercise 12 to find the...Ch. 1.4 - Let A and B are nn matrices. Show that if...Ch. 1.4 - Let A be a nonsingular matrix. Show that A1 is...Ch. 1.4 - Prove that if A is nonsingular then AT is...Ch. 1.4 - Let A be an nn matrix and let x and y be vectors...Ch. 1.4 - Let A be a nonsingular nn matrix. Use mathematical...Ch. 1.4 - Let A be an nn matrix. Show that if A2=O , then IA...Ch. 1.4 - Let A be an nn matrix. Show that if Ak+1=O , then...Ch. 1.4 - Given R=[cossinsincos] Show that R is nonsingular...Ch. 1.4 - An nn matrix A is said to be an involutionifA2=I ....Ch. 1.4 - Let u be a unity vector in n (i.e. uTu=1 ) and let...Ch. 1.4 - A matrix A is said to be an idempotentif A2=A ....Ch. 1.4 - Prob. 25ECh. 1.4 - Let D be an nn diagonal matrix whose diagonal...Ch. 1.4 - Let Abe an involution matrix and let...Ch. 1.4 - Let A be an mn matrix. Show that ATA and AAT are...Ch. 1.4 - Let A and B be symmetric nn matrices. Prove that...Ch. 1.4 - Let Abe an nn matrix and let B=A+ATandC=AAT (a)...Ch. 1.4 - In Application 1, how many married women and how...Ch. 1.4 - Consider the matrix A=[ 0 1 0 1 1 1 0 1 1 0 0 1 0...Ch. 1.4 - Consider the graph (a) Determine the adjacency...Ch. 1.4 - If Ax=Bx for some nonzero vector x, then the...Ch. 1.4 - If A and B are singular nn matrices, then A+B is...Ch. 1.4 - If A and B are nonsingular matrices, then (AB)T is...Ch. 1.5 - Which of the matrices that follow are elementary...Ch. 1.5 - Find the inverse of each matrix in Exercise 1. For...Ch. 1.5 - Prob. 3ECh. 1.5 - Prob. 4ECh. 1.5 - Let A=[ 1 2 1 2 1 0 4 3 2 ],B=[ 1 2 2 2 1 2 4 3 6...Ch. 1.5 - Prob. 6ECh. 1.5 - Let A=[2164] (a) Express A1 as a product of...Ch. 1.5 - Compute the LU factorization of each of the...Ch. 1.5 - Let A=[ 1 3 2 0 3 2 1 4 3 ] (a) Verify that A1=[ 1...Ch. 1.5 - Find the inverse of each of the following...Ch. 1.5 - Prob. 11ECh. 1.5 - Let A=[ 5 3 3 2 ],B=[ 6 2 2 4 ],C=[ 4 6 2 3 ]...Ch. 1.5 - Is the transpose of an elementary matrix an...Ch. 1.5 - Let U and R bennupper triangular matrices and...Ch. 1.5 - Let A be a 33 matrix and suppose that 2a1+a24a3=0...Ch. 1.5 - Prob. 16ECh. 1.5 - Let A and B be nn matrices and let C=AB . Show...Ch. 1.5 - Prob. 18ECh. 1.5 - Let U be an nn upper triangular matrix with...Ch. 1.5 - Prob. 20ECh. 1.5 - Prob. 21ECh. 1.5 - Show that if A is a symmetric nonsingular matrix...Ch. 1.5 - Prove that if A is a row equivalent to B then B is...Ch. 1.5 - Prob. 24ECh. 1.5 - Prob. 25ECh. 1.5 - Prove that B is row equivalent to A if and only if...Ch. 1.5 - Is it possible for a singular matrix B to be row...Ch. 1.5 - Prob. 28ECh. 1.5 - Prob. 29ECh. 1.5 - Prob. 30ECh. 1.5 - Prob. 31ECh. 1.5 - Prob. 32ECh. 1.6 - Let A be a nonsingular nn matrix. Perform the...Ch. 1.6 - Prob. 2ECh. 1.6 - Let A=[ 1 2 1 1 ]andB=[ 2 1 1 3 ] (a) Calculate...Ch. 1.6 - Let I=[ 1 0 0 1 ],E=[ 0 1 1 0 ],O=[ 0 0 0 0 ] C=[...Ch. 1.6 - Perform each of the following block...Ch. 1.6 - Given X=[ 2 4 1 2 5 3 ],Y=[ 1 2 2 3 4 1 ] (a)...Ch. 1.6 - Let A=[ A 11 A 21 A 12 A 22 ]andAT=[ A 11 T A 12 T...Ch. 1.6 - Let Abe an mn matrix, X and nr matrix, and B an mn...Ch. 1.6 - Prob. 9ECh. 1.6 - Prob. 10ECh. 1.6 - Prob. 11ECh. 1.6 - Let A and B be nn matrices and let M be a block...Ch. 1.6 - Prob. 13ECh. 1.6 - Prob. 14ECh. 1.6 - Prob. 15ECh. 1.6 - Prob. 16ECh. 1.6 - Prob. 17ECh. 1.6 - Let A, B, L, M, S, and T be nn matrices with A, B,...Ch. 1.6 - Let Abe an nn matrix and xn . (a) A scalar c can...Ch. 1.6 - If A is an nn matrix with the property that Ax=0...Ch. 1.6 - Prob. 21ECh. 1.6 - Prob. 22ECh. 1 - Use MATLAB to generate random 44 matrices A and B....Ch. 1 - Set n=200 and generate an nn matrix and two...Ch. 1 - Set A=floor(10*rand(6)) . By construction, the...Ch. 1 - Construct a mainx as follows: Set...Ch. 1 - Generate a matrix A by setting A = floor(10 *...Ch. 1 - Consider the graph (a) Determine the adjacency...Ch. 1 - In Application 1 of Section 1.4, the numbers of...Ch. 1 - The following table describes a seven-stage model...Ch. 1 - Set A = magic(8) and then compute its reduced row...Ch. 1 - Set B=[1,1;1,1] and A=[zeros(2),eye(2);eye(2),B]...Ch. 1 - The MATLAB commands A = floor(10 * rand((6)), B=AA...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - This chapter test consists of trueorfalse...Ch. 1 - Find all solutions of the linear system...Ch. 1 - (a) A linear equation in two unknowns corresponds...Ch. 1 - LetAx=bbe a system of n linear equations in n...Ch. 1 - LetAbeamatrix of the form A=[22] where and are...Ch. 1 - Let A=[213427135],B=[213135427],C=[013027535] Find...Ch. 1 - Let A be a 33 matrix and let b=3a1+a2+4a3 Will the...Ch. 1 - Let A be a 33 matrix and suppose that a13a2+2a3=0...Ch. 1 - Given the vector x0=[11] is it possible to find 22...Ch. 1 - Let A and B be symmetric nn matrices and let C=AB...Ch. 1 - Let E and F be nn elementary matrices and let C=EF...Ch. 1 - Given A=[IOOOIOOBI] where all the submatrices are...Ch. 1 - LetA and B be 1010 matrices that are...
Knowledge Booster
Background pattern image
Algebra
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Text book image
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Text book image
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Text book image
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Text book image
College Algebra
Algebra
ISBN:9781337282291
Author:Ron Larson
Publisher:Cengage Learning
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Propositional Logic, Propositional Variables & Compound Propositions; Author: Neso Academy;https://www.youtube.com/watch?v=Ib5njCwNMdk;License: Standard YouTube License, CC-BY
Propositional Logic - Discrete math; Author: Charles Edeki - Math Computer Science Programming;https://www.youtube.com/watch?v=rL_8y2v1Guw;License: Standard YouTube License, CC-BY
DM-12-Propositional Logic-Basics; Author: GATEBOOK VIDEO LECTURES;https://www.youtube.com/watch?v=pzUBrJLIESU;License: Standard Youtube License
Lecture 1 - Propositional Logic; Author: nptelhrd;https://www.youtube.com/watch?v=xlUFkMKSB3Y;License: Standard YouTube License, CC-BY
MFCS unit-1 || Part:1 || JNTU || Well formed formula || propositional calculus || truth tables; Author: Learn with Smily;https://www.youtube.com/watch?v=XV15Q4mCcHc;License: Standard YouTube License, CC-BY