Chemistry (AP Edition)
Chemistry (AP Edition)
9th Edition
ISBN: 9781133611103
Author: Steven S. Zumdahl, Susan A. Zumdahl
Publisher: Brooks Cole
Question
Book Icon
Chapter 16, Problem 21E

(a)

Interpretation Introduction

Interpretation: The solubility of CaC2O4 and BiI3 is given. The solubility product of CaC2O4 and BiI3 is to be calculated.

Concept introduction: The solubility product Ksp is the equilibrium constant that is applied when salt partially dissolve in a solvent. The solubility product of dissociation of AxBy is calculated as,

Ksp=[A]x[B]y

(a)

Expert Solution
Check Mark

Answer to Problem 21E

Answer

The solubility product of CaC2O4 is 2.3×109_ .

Explanation of Solution

Explanation

To determine: The solubility product of CaC2O4 .

The concentration of Ca2+ is 4.8×105mol/L_ .

Given

Solubility of CaC2O4 is 4.8×105mol/L .

Since, solid CaC2O4 is placed in contact with water. Therefore, compound present before the reaction is CaC2O4 and H2O . The dissociation reaction of CaC2O4 is,

CaC2O4(s)Ca2+(aq)+C2O42(aq)

Since, CaC2O4 does not dissolved initially, hence,

[Ca2+]initial=[C2O42]initial=0

The concentration at equilibrium can be calculated from the measured solubility of CaC2O4 . If 4.8×105mol of CaC2O4 is dissolved in 1.0L of solution, the change in solubility will be equal to 4.8×105mol/L . The reaction is,

CaC2O4(s)Ca2+(aq)+C2O42(aq)

Therefore,

4.8×105mol/LCaC2O44.8×105mol/LCa2++4.8×105mol/LC2O4

The equilibrium concentration of [Ca2+] is written as,

[Ca2+]=[Ca2+]initial+changetoreachequilibrium

Substitute the value of [Ca2+]initial and change to reach equilibrium in the above equation.

[Ca2+]=[Ca2+]initial+changetoreachequilibrium=0+4.8×105mol/L=4.8×105mol/L_

The concentration of C2O42 is 4.8×105mol/L_ .

Given

Solubility of CaC2O4 is 4.8×105mol/L .

The equilibrium concentration of [C2O42] is written as,

[C2O42]=[C2O42]initial+changetoreachequilibrium

Substitute the value of [C2O42]initial and change to reach equilibrium in the above equation.

[C2O42]=[C2O42]initial+changetoreachequilibrium=0+4.8×105mol/L=4.8×105mol/L_

The solubility product of CaC2O4 is 2.3×109_ .

The concentration of Ca2+ is 4.8×105mol/L .

The concentration of C2O42 is 4.8×105mol/L .

Formula

The solubility product of CaC2O4 is calculated as,

Ksp=[Ca2+][C2O42]

Where,

  • Ksp is solubility product.
  • [Ca2+] is concentration of Ca2+ .
  • [C2O42] is concentration of C2O42

Substitute the values of [Ca2+] and [C2O42] in the above expression.

Ksp=[Ca2+][C2O42]=(4.8×105)(4.8×105)=2.3×109_

(b)

Interpretation Introduction

Interpretation: The solubility of CaC2O4 and BiI3 is given. The solubility product of CaC2O4 and BiI3 is to be calculated.

Concept introduction: The solubility product Ksp is the equilibrium constant that is applied when salt partially dissolve in a solvent. The solubility product of dissociation of AxBy is calculated as,

Ksp=[A]x[B]y

(b)

Expert Solution
Check Mark

Answer to Problem 21E

Answer

The solubility product of BiI3 is 8.20×1019_ .

Explanation of Solution

Explanation

To determine: The solubility product of BiI3 .

The concentration of Bi3+ is 1.32×105mol/L_ .

Given

Solubility of BiI3 is 1.32×105mol/L .

Since, solid BiI3 is placed in contact with water. Therefore, compound present before the reaction is BiI3 and H2O . The dissociation reaction of BiI3 is,

BiI3(s)Bi3+(aq)+3I(aq)

Since, BiI3 does not dissolved initially, hence,

[Bi3+]initial=[I]initial=0

The concentration at equilibrium can be calculated from the measured solubility of BiI3 . If 1.32×105mol/L of BiI3 is dissolved in 1.0L of solution, the change in solubility will be equal to 1.32×105mol/L . The reaction is,

BiI3(s)Bi3+(aq)+3I(aq)

Therefore,

1.32×105mol/LBiI31.32×105mol/LBi3++(3×1.32×105)mol/LI

The equilibrium concentration of Bi3+ is written as,

[Bi3+]=[Bi3+]initial+changetoreachequilibrium

Substitute the value of [Bi3+]initial and change to reach equilibrium in the above equation.

[Bi3+]=[Bi3+]initial+changetoreachequilibrium=0+1.32×105mol/L=1.32×105mol/L_

The concentration of I is 3.96×105mol/L_ .

Given

Solubility of BiI3 is 1.32×105mol/L .

The equilibrium concentration of I is written as,

[I]=[I]initial+changetoreachequilibrium

Substitute the value of [I]initial and change to reach equilibrium in the above equation.

[I]=[I]initial+changetoreachequilibrium=0+(3×1.32×105mol/L)=3.96×105mol/L_

The solubility product of BiI3 is 8.20×1019_ .

The concentration of Bi3+ is 1.32×105mol/L .

The concentration of I is 3.96×105mol/L .

Formula

The solubility product of BiI3 is calculated as,

Ksp=[Bi3+][I]3

Where,

  • Ksp is solubility product.
  • [Bi3+] is concentration of Bi3+ .
  • [I] is concentration of I

Substitute the values of [Bi3+] and [I] in the above expression.

Ksp=[Bi3+][I]3=(1.32×105)(3.96×105)3=8.20×1019_

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The complex anion in Ba₂[Cr(CN)6] is a tetragonally distorted octahedral complex (Dan). Baz[Cr(CN)6] is paramagnetic at room temperature with S = 1. Assume that the complex is a low-spin complex. a) Identify if the [Cr(CN)6] anionic complex has 4 long and 2 short bonds (left side of figure) or if the complex has 4 short and 2 long bonds (right side of figure) with respect to Oh symmetry. Use crystal field theory to answer this question. Explain/rationalize your decision. Can the provided information decide on the order of orbital energies? Dah Tetragonal Distortion ய Dab z-compression z-elongation x and y elongation O symmetry x and y compression E eg d² dx²-y² t2g dxy dxz dyz Question 4 a) continued: Provide your explanations in the space below. b) At low temperatures Ba₂[Cr(CN)6] is ferromagnetically ordered with a phase transition to a paramagnetic phase at Tc = 150K. Sketch the magnetic susceptibility vs. temperature in the diagram below. Indicate Tc as well as the paramagnetic and…
a) Draw the octahedral mer-[FeCl3(CN)3] complex and determine its point group. Use proper wedges and dashes in order to illustrate 3 dimensional details. Use the point group to determine if the complex has a resulting net dipole moment and describe its allowed direction with respect to its symmetry elements (if applicable). ード M 4- b) Substitute one chlorido ligand in mer-[FeCl3(CN)3] 4 with one fluorido ligand. Determine all possible isomers and their corresponding point groups. Use the point groups to determine if the complexes have resulting net dipole moments and describe their allowed direction with respect to its symmetry elements (if applicable). The number of complex sketches below is not necessarily indicative of the number of isomers. 4- 4- ☐☐☐ c) Substitute two chlorido ligands in mer-[FeCl3 (CN)3] 4 with two fluorido ligands. Determine all possible isomers and their corresponding point groups.. Use the point groups to determine if the complexes have resulting net dipole…
Show work. don't give Ai generated solution

Chapter 16 Solutions

Chemistry (AP Edition)

Ch. 16 - Which of the following will affect the total...Ch. 16 - Prob. 2ALQCh. 16 - You are browsing through the Handbook of...Ch. 16 - A friend tells you: The constant Ksp of a salt is...Ch. 16 - Explain the following phenomenon: You have a test...Ch. 16 - What happens to the Ksp value of a solid as the...Ch. 16 - Which is more likely to dissolve in an acidic...Ch. 16 - For which of the following is the Ksp value of the...Ch. 16 - Ag2S(s) has a larger molar solubility than CuS...Ch. 16 - Solubility is an equilibrium position, whereas Ksp...Ch. 16 - Prob. 11QCh. 16 - Prob. 12QCh. 16 - The common ion effect for ionic solids (salts) is...Ch. 16 - Sulfide precipitates are generally grouped as...Ch. 16 - List some ways one can increase the solubility of...Ch. 16 - The stepwise formation constants for a complex ion...Ch. 16 - Silver chloride dissolves readily in 2 M NH3 but...Ch. 16 - If a solution contains either Pb2+(aq) or Ag+(aq),...Ch. 16 - Write balanced equations for the dissolution...Ch. 16 - Write balanced equations for the dissolution...Ch. 16 - Prob. 21ECh. 16 - Use the following data to calculate the Ksp value...Ch. 16 - Approximately 0.14 g nickel(II) hydroxide,...Ch. 16 - The solubility of the ionic compound M2X3, having...Ch. 16 - The concentration of Pb2+ in a solution saturated...Ch. 16 - The concentration of Ag+ in a solution saturated...Ch. 16 - Calculate the solubility of each of the following...Ch. 16 - Calculate the solubility of each of the following...Ch. 16 - Cream of tartar, a common ingredient in cooking,...Ch. 16 - Barium sulfate is a contrast agent for X-ray scans...Ch. 16 - Calculate the molar solubility of Mg (OH)2, Ksp =...Ch. 16 - Prob. 32ECh. 16 - Calculate the molar solubility of Al(OH)3, Ksp = 2...Ch. 16 - Calculate the molar solubility of Co(OH)3, Ksp =...Ch. 16 - For each of the following pairs of solids,...Ch. 16 - For each of the following pairs of solids,...Ch. 16 - Calculate the solubility (in moles per liter) of...Ch. 16 - Calculate the solubility of Co(OH)2(s) (Ksp = 2.5 ...Ch. 16 - The Ksp for silver sulfate (Ag2SO4) is 1.2 105....Ch. 16 - The Ksp for lead iodide (PbI2) is 1.4 108....Ch. 16 - Calculate the solubility of solid Ca3(PO4)2 (Ksp =...Ch. 16 - Calculate the solubility of solid Pb3(P04)2 (Ksp =...Ch. 16 - Prob. 43ECh. 16 - The solubility of Pb(IO3)(s) in a 0.10-M KIO3...Ch. 16 - Which of the substances in Exercises 27 and 28...Ch. 16 - For which salt in each of the following groups...Ch. 16 - What mass of ZnS (Ksp = 2.5 1022) will dissolve...Ch. 16 - The concentration of Mg2+ in seawater is 0.052 M....Ch. 16 - Will a precipitate form when 100.0 mL of 4.0 104...Ch. 16 - A solution contains 1.0 105 M Ag+ and 2.0 106 M...Ch. 16 - A solution is prepared by mixing 100.0 mL of 1.0 ...Ch. 16 - Prob. 52ECh. 16 - Calculate the final concentrations of K+(aq),...Ch. 16 - A solution is prepared by mixing 75.0 mL of 0.020...Ch. 16 - A 50.0-mL sample of 0.00200 M AgNO3 is added to...Ch. 16 - Prob. 56ECh. 16 - A solution contains 1.0 105 M Na3PO4. What is the...Ch. 16 - The Ksp of Al(OH)3 is 2 1032. At what pH will a...Ch. 16 - A solution is 1 104 M in NaF, Na2S, and Na3PO4....Ch. 16 - A solution contains 0.25 M Ni(NO3)2 and 0.25 M...Ch. 16 - Write equations for the stepwise formation of each...Ch. 16 - Write equations for the stepwise formation of each...Ch. 16 - In the presence of CN, Fe3+ forms the complex ion...Ch. 16 - In the presence of NH3, Cu2+ forms the complex ion...Ch. 16 - Prob. 65ECh. 16 - Prob. 66ECh. 16 - The overall formation constant for HgI42 is 1.0 ...Ch. 16 - A solution is prepared by adding 0.10 mole of...Ch. 16 - A solution is formed by mixing 50.0 mL of 10.0 M...Ch. 16 - A solution is prepared by mixing 100.0 mL of 1.0 ...Ch. 16 - a. Calculate the molar solubility of AgI in pure...Ch. 16 - Solutions of sodium thiosulfate are used to...Ch. 16 - Kf for the complex ion Ag(NH3)2+ is 1.7 107. Ksp...Ch. 16 - Prob. 74ECh. 16 - Prob. 75ECh. 16 - The solubility of copper(II) hydroxide in water...Ch. 16 - A solution contains 0.018 mole each of I, Br, and...Ch. 16 - You have two salts, AgX and AgY, with very similar...Ch. 16 - Tooth enamel is composed of the mineral...Ch. 16 - The U.S. Public Health Service recommends the...Ch. 16 - Prob. 81AECh. 16 - Calculate the mass of manganese hydroxide present...Ch. 16 - Prob. 83AECh. 16 - The active ingredient of Pepto-Bismol is the...Ch. 16 - Nanotechnology has become an important field, with...Ch. 16 - The equilibrium constant for the following...Ch. 16 - Calculate the concentration of Pb2+ in each of the...Ch. 16 - Will a precipitate of Cd(OH)2 form if 1.0 mL of...Ch. 16 - a. Using the Ksp value for Cu(OH)2 (1.6 1019) and...Ch. 16 - Describe how you could separate the ions in each...Ch. 16 - The solubility rules outlined in Chapter 4 say...Ch. 16 - In the chapter discussion of precipitate...Ch. 16 - Assuming that the solubility of Ca3(PO4)2(s) is...Ch. 16 - Order the following solids (ad) from least soluble...Ch. 16 - The Ksp for PbI2(s) 1.4 108. Calculate the...Ch. 16 - The solubility of Pb(IO3)2(s) in a 7.2 102-M KIO3...Ch. 16 - A 50.0-mL sample of 0.0413 M AgNO3(aq) is added to...Ch. 16 - Prob. 99CPCh. 16 - Prob. 100CPCh. 16 - a. Calculate the molar solubility of AgBr in pure...Ch. 16 - Calculate the equilibrium concentrations of NH3,...Ch. 16 - Calculate the solubility of AgCN(s) (Ksp = 2.2 ...Ch. 16 - Calcium oxalate (CaC2O4) is relatively insoluble...Ch. 16 - A solution saturated with a salt of the type M3X2...Ch. 16 - Consider 1.0 L of an aqueous solution that...Ch. 16 - The Ksp for Q, a slightly soluble ionic compound...Ch. 16 - Aluminium ions react with the hydroxide ion to...
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning