Find the reaction and plot the shear and bending moment diagram.
Explanation of Solution
Fixed end moment:
Formula to calculate the relative stiffness for fixed support
Formula to calculate the fixed moment for point load with equal length are
Formula to calculate the fixed moment for point load with equal length are
Formula to calculate the fixed moment for point load with unequal length are
Formula to calculate the fixed moment for UDL is
Calculation:
Consider the flexural rigidity EI of the beam is constant.
Show the free body diagram of the entire beam as in Figure 1.
Refer Figure 1,
Calculate the relative stiffness
Calculate the relative stiffness
In the above beam, only joint C is free to rotate. Hence, calculate the distribution factor at joint C.
Calculate the distribution factor
Substitute
Calculate the distribution factor
Substitute
Check for sum of distribution factor:
Substitute 0.5 for
Hence, OK.
Calculate the fixed end moment for AC.
Calculate the fixed end moment for CA.
Calculate the fixed end moment for CE.
Calculate the fixed end moment for EC.
Show the calculation of final moments using moment distribution method as in Table 1.
Consider the member AC of the beam:
Show the free body diagram of the member AC as in Figure 2.
Calculate the vertical reaction at the left end of the joint C by taking moment about point A.
Calculate the horizontal reaction at point A by resolving the horizontal equilibrium.
Calculate the vertical reaction at point A by resolving the vertical equilibrium.
Consider the member CE of the beam:
Show the free body diagram of the member CE as in Figure 3.
Calculate the vertical reaction at the right end of the joint C by taking moment about point E.
Calculate the horizontal reaction at point E by resolving the horizontal equilibrium.
Calculate the vertical reaction at point E by resolving the vertical equilibrium.
Calculate the total reaction at point C.
Substitute
Show the reaction of the beam in Figure 4.
Refer Figure 4,
Shear diagram:
Point A:
Point B:
Point C:
Point D:
Point E:
Plot the shear force diagram of the beam as in Figure 5.
Refer Figure 4,
Bending moment diagram:
Point A:
Point B:
Point C:
Point D:
Point E:
Plot the bending moment diagram of the beam as in Figure 6.
Want to see more full solutions like this?
Chapter 16 Solutions
Structural Analysis, SI Edition
- V A W What is the degree of positioning (PG) of a cuboid body between two guiding surfaces? (Assumption: gravity ignored) U B W U C W U V V V PG = 0 PG = 1 PG = 2 D W PG = 3 Uarrow_forwardScrews have to be fed from a pile to a machining process in an orderly manner. Which feeding system do you choose (1 point)? Name two advantages and two disadvantages of your chosen system (4 P). Name 3 types of chicanes you could use to ensure a defined output of screws? (3 P)arrow_forwardA hanging cable supports a single mass of 27,000 kg (Fig 3). Assuming that the weight of the cable is negligible, what is the force in the compression member that holds the ends of the cable apart? What is the force in each segment of the cable? Please solve this question numerically, using equilibrium equations. +60° 60° 90° 27,000 kg Fig (3)arrow_forward
- Q11. Determine the magnitude of the reaction force at C. 1.5 m -1.5 m- C 4 kN -1.5 m B D Handwritten please a) 4 kN b) 6.5 kN c) 8 kN d) e) 11.3 KN 20 kNarrow_forwardA hanging cable supports a single mass of 27,000 lbs ). Assuming that the weight of the cable is negligible, what is the force in the compression member that holds the ends of the cable apart? What is the force in each segment of the cable? Please solve this question numerically, using equilibrium equations.arrow_forwardStar Star to Dalta EX: find the Reg Resistance Sthan A and B 10 A ML lon MWL lon 102 ww bo monedasarrow_forward
- F1 ୪ α В F2 You and your friends are planning to move the log. The log needs to be moved straight in the x-axis direction and it takes a combined force of 2.9 kN. You (F1) are able to exert 610 N at a 32°. What magnitude (F2) and direction (B) do you needs your friends to pull? = Your friends had to pull at: magnitude in Newton, F2 = 2405 direction in degrees, B = -7.72 × N × degarrow_forwardNeed hekoarrow_forwardA B 0 B F C The force F = 319 N acts on the frame shown in picture. Resolve this force into components acting along memebers AB and AC to determine the magnitude of each component. The angle mesurements are 0 = 33° and B = 40°. magnitude in member AB in Newton: N magnitude in memeber AC in Newton: Narrow_forward
- The force vector F has a magnitude of F = 450 lb and acts 15.7° with respect to vertical as at point A at an angle → = shown. The force F is balanced by the tension forces parallel to the two rods AC and AB such that the vector equation → F+F AC + FAB = 0 is satisfied. Determine the tension forces in the two rods in Cartesian Vector Notation. с a b B CC + BY NC SA 2013 Michael Swanbom A NF Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 5.9 ft b C 3 ft 3.1 ft FAC = FAB= ĵ) lb lb + +arrow_forwardF2 Y B V 5 4 3 F1 X F3 → The given forces are F₁ = 20 kN, F2= 28 kN, and F3 = 61 kN, with given ratio for F₁ and angles of B = 51° and y = 67°. Find the resultant force. First in Cartesian Vector Notation: FR = 2 + j) kN Then, find the magnitude and direction: magnitude in kN: kN conventional direction (counter clockwise from positive X axis) in degrees: degarrow_forwardY F1 α В X F2 You and your friends are planning to move the log. The log. needs to be moved straight in the x-axis direction and it takes a combined force of 2.9 kN. You (F1) are able to exert 610 N at a = 32°. What magnitude (F2) and direction (B) do you needs your friends to pull? Your friends had to pull at: magnitude in Newton, F2 = direction in degrees, ẞ = N degarrow_forward