ENGINEERING MECHANICS Â?? STATICS
ENGINEERING MECHANICS Â?? STATICS
15th Edition
ISBN: 9780137519132
Author: HIBBELER
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
100%
Book Icon
Chapter 1.6, Problem 1P

What is the weight in newtons of an object that has a mass of (a) 8 kg, (b) 0.04 kg, and (c) 760 Mg?

(a)

Expert Solution
Check Mark
To determine

The weight in newtons of an object that has a mass in kg.

Answer to Problem 1P

The weight in newtons of an object that has a mass of 8kg is 78.5N_.

Explanation of Solution

Given:

The mass of the object is 8kg.

Write the conversion for the quantity.

8kg

Write the conversion formula.

kg=9.81N

Conclusion:

Convert the weight in newtons from kg.

W=8kg×9.81Nkg=78.5N

Thus, the weight in newtons of an object is 78.5N_.

(b)

Expert Solution
Check Mark
To determine

The weight in newtons of an object that has a mass in kg.

Answer to Problem 1P

The weight in newtons of an object that has a mass of 0.04kg is 0.392N_.

Explanation of Solution

Given:

The mass of the object is 0.44kg.

Write the conversion for the quantity.

0.44kg

Write the conversion formula.

kg=9.81N

Conclusion:

Convert the weight in newtons from kg.

W=0.04kg×9.81Nkg=0.392N

Thus, the weight in newtons of an object is 0.392N_.

(c)

Expert Solution
Check Mark
To determine

The weight in newtons of an object that has a mass in Mg.

Answer to Problem 1P

The weight in newtons of an object that has a mass of 760Mg is 7.458MN_.

Explanation of Solution

Given:

The mass of the object is 760Mg

Write the conversion for the quantity.

760Mg

Write the conversion formula.

Mg=9806.65N

Conclusion:

Convert the weight in newtons from Mg.

W=760Mg×9806.65NMg=(7.458×106N)×106MNN=7.458MN

Thus, the weight in newtons of an object is 7.458MN_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
In using the bolt cutter shown, a worker applies two forces P to the handles. If the magnitude ofP is 500 N, determine the magnitude of the forces exerted by the cutter on the bolt
Arterioles bifurcate (i.e., split) into capillaries in the circulatory system. Blood flows at a velocity of 20 cm/s through an arteriole with a diameter of 0.20 cm. This vessel bifurcates into two vessels: one with a diameter of 0.17 cm and a blood flow velocity of 18 cm/sec, and one with a diameter of 0.15 cm. Each of these two vessels splits again. The 0.17-cm diameter vessel splits into two vessels, each with a diameter of 0.15 cm. The 0.15-cm diameter vessel splits into two vessels, each with a diameter of 0.12 cm. Determine the mass flow rate and velocity of blood in each of the four vessels at the end of the arteriole bifurcations. You may need to set up several systems, each with a different system boundary, in order to solve this problem.
6) Draw a Front, side and Top view for the following objects: p.s. you don't need to label the alphabet ISOMETRIC PICTORIAL VIEW K R C B E R D 0 A
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Introduction To Engg Mechanics - Newton's Laws of motion - Kinetics - Kinematics; Author: EzEd Channel;https://www.youtube.com/watch?v=ksmsp9OzAsI;License: Standard YouTube License, CC-BY