(a)
Interpretation:The molecule with highest boiling point out of
Concept Introduction:
Solid state has strong intermolecular force of attraction between particles whereas the gaseous particles have weakest intermolecular forces between particles. Due to intermolecular force of attraction between particles, different interconversions are possible between these three states like evaporation, condensation, sublimation, etc. These states have different intermolecular forces between substances. The intermolecular forces exist between different molecules and are mainly 4 types:
- London dispersion force
- Hydrogen bond
- Dipole-dipole bond
- Ion-dipole bond
The order of strength of forces can be shown as:
London dispersion force < dipole-dipole force < Ion-dipole force
(a)
Answer to Problem 18E
Explanation of Solution
The ion-dipole and dipole-dipole exist between dipoles and ions whereas hydrogen bonding exist between two electronegative elements whereas H atom acts as bridge. The London dispersion forces exist between two non-polar molecules and are the weakest forces.
As the intermolecular forces become stronger, the boiling point increases because more energy is required to break the forces between molecules.
All the given molecules are non-polar due to symmetrical geometry and have London dispersion forces. Since the strength of force increases with increase in molar mass therefore
(b)
Interpretation:The molecule with lowest freezing point out of
Concept Introduction:
Solid state has strong intermolecular force of attraction between particles whereas the gaseous particles have weakest intermolecular forces between particles. Due to intermolecular force of attraction between particles, different interconversions are possible between these three states like evaporation, condensation, sublimation, etc. These states have different intermolecular forces between substances. The intermolecular forces exist between different molecules and are mainly 4 types:
- London dispersion force
- Hydrogen bond
- Dipole-dipole bond
- Ion-dipole bond
The order of strength of forces can be shown as:
London dispersion force < dipole-dipole force < Ion-dipole force
(b)
Answer to Problem 18E
Explanation of Solution
The ion-dipole and dipole-dipole exist between dipoles and ions whereas hydrogen bonding exist between two electronegative elements whereas H atom acts as bridge. The London dispersion forces exist between two non-polar molecules and are the weakest forces.
As the intermolecular forces become stronger, the freezing point increases because more energy is required to melt the forces between molecules. In the given molecules,
LiF is ionic compound and HCl has dipole-dipole interactions thus
(c)
Interpretation:The molecule with lowest vapor pressure at 25°C of
Concept Introduction:
Solid state has strong intermolecular force of attraction between particles whereas the gaseous particles have weakest intermolecular forces between particles. Due to intermolecular force of attraction between particles, different interconversions are possible between these three states like evaporation, condensation, sublimation, etc. These states have different intermolecular forces between substances. The intermolecular forces exist between different molecules and are mainly 4 types:
- London dispersion force
- Hydrogen bond
- Dipole-dipole bond
- Ion-dipole bond
The order of strength of forces can be shown as:
London dispersion force < dipole-dipole force < Ion-dipole force
(c)
Answer to Problem 18E
Explanation of Solution
The ion-dipole and dipole-dipole exist between dipoles and ions whereas hydrogen bonding exist between two electronegative elements whereas H atom acts as bridge. The London dispersion forces exist between two non-polar molecules and are the weakest forces.
In the given molecules,
(d)
Interpretation:The molecule with greatestviscosity out of
Concept Introduction:
Solid state has strong intermolecular force of attraction between particles whereas the gaseous particles have weakest intermolecular forces between particles. Due to intermolecular force of attraction between particles, different interconversions are possible between these three states like evaporation, condensation, sublimation, etc. These states have different intermolecular forces between substances. The intermolecular forces exist between different molecules and are mainly 4 types:
- London dispersion force
- Hydrogen bond
- Dipole-dipole bond
- Ion-dipole bond
The order of strength of forces can be shown as:
London dispersion force < dipole-dipole force < Ion-dipole force
(d)
Answer to Problem 18E
Explanation of Solution
The ion-dipole and dipole-dipole exist between dipoles and ions whereas hydrogen bonding exist between two electronegative elements whereas H atom acts as bridge. The London dispersion forces exist between two non-polar molecules and are the weakest forces.
As the intermolecular forces become stronger, the boiling point increases because more energy is required to break the forces between molecules.
As the strength of intermolecular forces increases, the viscosity increases as the molecules come closer to each other. Since HF molecules have strongest hydrogen bond between molecule compare to
(e)
Interpretation:The molecule with greatest heat of vaporization out of
Concept Introduction:
Solid state has strong intermolecular force of attraction between particles whereas the gaseous particles have weakest intermolecular forces between particles. Due to intermolecular force of attraction between particles, different interconversions are possible between these three states like evaporation, condensation, sublimation, etc. These states have different intermolecular forces between substances. The intermolecular forces exist between different molecules and are mainly 4 types:
- London dispersion force
- Hydrogen bond
- Dipole-dipole bond
- Ion-dipole bond
The order of strength of forces can be shown as:
London dispersion force < dipole-dipole force < Ion-dipole force
(e)
Answer to Problem 18E
In the given molecules,
Explanation of Solution
The ion-dipole and dipole-dipole exist between dipoles and ions whereas hydrogen bonding exist between two electronegative elements whereas H atom acts as bridge. The London dispersion forces exist between two non-polar molecules and are the weakest forces.
As the intermolecular forces become stronger, the boiling point increases because more energy is required to break the forces between molecules.
The enthalpy of vaporization also increases with increase in molar mass and strength intermolecular forces. In the given molecules,
(f)
Interpretation:The molecule with smallest enthalpy of fusion out of
Concept Introduction:
Solid state has strong intermolecular force of attraction between particles whereas the gaseous particles have weakest intermolecular forces between particles. Due to intermolecular force of attraction between particles, different interconversions are possible between these three states like evaporation, condensation, sublimation, etc. These states have different intermolecular forces between substances. The intermolecular forces exist between different molecules and are mainly 4 types:
- London dispersion force
- Hydrogen bond
- Dipole-dipole bond
- Ion-dipole bond
The order of strength of forces can be shown as:
London dispersion force < dipole-dipole force < Ion-dipole force
(f)
Answer to Problem 18E
In the given molecules,
Explanation of Solution
The ion-dipole and dipole-dipole exist between dipoles and ions whereas hydrogen bonding exist between two electronegative elements whereas H atom acts as bridge. The London dispersion forces exist between two non-polar molecules and are the weakest forces.
As the intermolecular forces become stronger, the boiling point increases because more energy is required to break the forces between molecules.
The enthalpy of fusion also increases with increase in molar mass and strength intermolecular forces. In the given molecules,
Want to see more full solutions like this?
Chapter 16 Solutions
EBK CHEMICAL PRINCIPLES
- The normal boiling point of SO2 is 263.1 K and that of NH3 is 239.7 K. At −40 °C, would you predict that ammonia has a vapor pressure greater than, less than, or equal to that of sulfur dioxide? Explain.arrow_forwardArrange the following substances in order of increasing strength of crystal forces: CO2, KCl, H2O, N2, CaO.arrow_forwardFor each of the following pairs, choose the member with the lower boiling point. Explain your reason in each case. (a) NaCl or PCl3 (b) NH3 or AsH3 (c) C3H7OH or C2H5OCH3 (d) HI(g) or HCl(g)arrow_forward
- Which of the following do you expect to be molecular solids? a silicon tetrachloride, SiCl4 b lithium bromide, LiBr c sodium fluoride, NaF d bromine chloride, BrClarrow_forwardWhich of the following compounds would you expect to exhibit only London forces? a potassium chloride, KCl b c silicon tetrafluoride, SiF4 d phosphorus pentachloride, PCl5arrow_forwardExplain why liquids assume the shape of any container into which they are poured, whereas solids are rigid and retain their shape.arrow_forward
- Which of the following substances can be liquefied by applying pressure at 25C? For those that cannot, describe the conditions under which they can be liquefied. Substance Critical Temperature Critical Pressure Sulfur dioxide, SO2 158C 78 atm Acetylene, C2H2 36C 62 atm Methane. CH4 82C 46 atm Carbon monoxide, CO 140C 35 atmarrow_forward8.41 What is the specific feature of N, O, and F that causes them to play a role in hydrogen bonding?arrow_forwardWhich would you expect to have the higher fusion enthalpy, N2 or I2? Explain your choice.arrow_forward
- Describe, in general, the structures of ionic solids. Compare and contrast the structure of sodium chloride and zinc sulfide. How many tetrahedral holes and octahedral holes are there per closest packed anion? In zinc sulfide, why are only one-half of the tetrahedral holes filled with cations?arrow_forward8.48 Why must the vapor pressure of a substance be measured only after dynamic equilibrium is established?arrow_forwardp-Dichlorobenzene, C6H4Cl2, can be one of the ingredients in mothballs. Its vapor pressure at 20C is 0.40 mm Hg. (a) How many milligrams of C6H4Cl2 will sublime into an evacuated 750-mL flask at 20C? (b) If 5.0 mg of p-dichlorobenzene were put into an evacuated 750-mL flask, how many milligrams would remain in the solid phase? (c) What is the final pressure in an evacuated 500-mL flask at 20C that contains 2.00 mg of p-dichlorobenzene? Will there be any solid in the flask?arrow_forward
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning