
Concept explainers
(a)
Interpretation:
In the given set of reactions acid-base conjugate pairs has to be identified.
Concept Introduction:
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
Example: Consider the following reaction.
When Bronsted base accepts a proton the protonated species is known as conjugate acid and when Bronsted acid loses a proton deprotonated species is known as conjugate base. The conjugated acid-base pair is present in opposite side of the reaction. In this the base has one proton less than the acid.
The acid-base conjugate pair for the given reaction.
(b)
Interpretation:
In the given set of reactions acid-base conjugate pairs has to be identified.
Concept Introduction:
Bronsted's definition is based on the
Example: Consider the following reaction.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
When Bronsted base accepts a proton the protonated species is known as conjugate acid and when Bronsted acid loses a proton deprotonated species is known as conjugate base. The conjugated acid-base pair is present in opposite side of the reaction. In this the base has one proton less than the acid.
The acid-base conjugate pair for the given reaction.
(c)
Interpretation:
In the given set of reactions acid-base conjugate pairs has to be identified.
Concept Introduction:
Bronsted's definition is based on the chemical reaction that occurs when both acids and bases are added with each other. In Bronsted's theory acid donates proton, while base accepts proton from acid resulting in the formation of water.
Example: Consider the following reaction.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
When Bronsted base accepts a proton the protonated species is known as conjugate acid and when Bronsted acid loses a proton deprotonated species is known as conjugate base. The conjugated acid-base pair is present in opposite side of the reaction. In this the base has one proton less than the acid.
The acid-base conjugate pair for the given reaction.
(d)
Interpretation:
In the given set of reactions acid-base conjugate pairs has to be identified.
Concept Introduction:
Bronsted's definition is based on the chemical reaction that occurs when both acids and bases are added with each other. In Bronsted's theory acid donates proton, while base accepts proton from acid resulting in the formation of water.
Example: Consider the following reaction.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
When Bronsted base accepts a proton the protonated species is known as conjugate acid and when Bronsted acid loses a proton deprotonated species is known as conjugate base. The conjugated acid-base pair is present in opposite side of the reaction. In this the base has one proton less than the acid.
The acid-base conjugate pair for the given reaction.
(e)
Interpretation:
In the given set of reactions acid-base conjugate pairs has to be identified.
Concept Introduction:
Bronsted's definition is based on the chemical reaction that occurs when both acids and bases are added with each other. In Bronsted's theory acid donates proton, while base accepts proton from acid resulting in the formation of water.
Example: Consider the following reaction.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
When Bronsted base accepts a proton the protonated species is known as conjugate acid and when Bronsted acid loses a proton deprotonated species is known as conjugate base. The conjugated acid-base pair is present in opposite side of the reaction. In this the base has one proton less than the acid.
The acid-base conjugate pair for the given reaction.
(f)
Interpretation:
In the given set of reactions acid-base conjugate pairs has to be identified.
Concept Introduction:
Bronsted's definition is based on the chemical reaction that occurs when both acids and bases are added with each other. In Bronsted's theory acid donates proton, while base accepts proton from acid resulting in the formation of water.
Example: Consider the following reaction.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
When Bronsted base accepts a proton the protonated species is known as conjugate acid and when Bronsted acid loses a proton deprotonated species is known as conjugate base. The conjugated acid-base pair is present in opposite side of the reaction. In this the base has one proton less than the acid.
The acid-base conjugate pair for the given reaction.

Want to see the full answer?
Check out a sample textbook solution
Chapter 16 Solutions
Connect 1 Semester Access Card for General Chemistry: The Essential Concepts
- How many grams of solid NaCN have to be added to 1.5L of water to dissolve 0.18 mol of Fe(OH)3 in the form Fe(CN)63 - ? ( For simplicity, ignore the reaction of CN - ion with water) Ksp for Fe(OH)3 is 2.8E -39, and Kform for Fe(CN)63 - is 1.0E31arrow_forwardDraw the most stable chair conformation of 1-ethyl-1-methylcyclohexane, clearly showing the axial and equatorial substituents. [4] Draw structures corresponding to the following IUPAC name for each of the following compounds; [5] i) 4-Isopropyl-2,4,5-trimethylheptane ii) trans-1-tert-butyl-4-ethylcyclohexane iii) Cyclobutylcycloheptane iv) cis-1,4-di-isopropylcyclohexane (chair conformation) v) 3-Ethyl-5-isobutylnonanearrow_forwardDraw and name molecules that meet the following descriptions; [4] a) An organic molecule containing 2 sp2 hybridised carbon and 1 sp-hybridised carbon atom. b) A cycloalkene, C7H12, with a tetrasubstituted double bond. Also answer question 2 from the imagearrow_forward
- H 14. Draw the line angle form of the following molecule make sure you use the proper notation to indicate spatial positioning of atoms. F F H 15. Convert the following condensed form to line angle form: (CH3)3CCH2COCH2CON(CH2CH3)2arrow_forwardIn a reaction between two reactants A and B, the half-life is the same for both only if(A) the stoichiometry A:B is 1:1.(B) the stoichiometry A:B is 1:2 or 2:1.arrow_forwardIn a reaction between two reactants A and B, the half-life is the same for both.(1) Only if the stoichiometry A:B is 1:1.(2) If the initial quantities of A and B are in their stoichiometric ratios.arrow_forward
- There are 48 pairs of students in the following table. Each pair has quantitatively determined the mass of taurine in a 250 mL can of the popular energy drink marketed as “Munster” using High Performance Liquid Chromatography (HPLC). The class results are presented below: QUESTION: Calculate the measurement of uncertainty and provide the data in a spreadsheet table. Mass of Taurine (mg) Mass of Taurine (mg) (Table continued) 152.01 152.23 151.87 151.45 154.11 152.64 152.98 153.24 152.88 151.45 153.49 152.48 150.68 152.33 151.52 153.63 152.48 151.68 153.17 153.40 153.77 153.67 152.34 153.16 152.57 153.02 152.86 151.50 151.23 152.57 152.72 151.54 146.47 152.38 152.44 152.54 152.53 152.54 151.32 152.87 151.24 153.26 152.02 152.90 152.87 151.49 152.46 152.58arrow_forward1. Predict the organic product(s) of the following reactions. Assume excess of reagents unless otherwise noted. a) &l BH3 •THF b) 1) NaOH 2) H3O+ solve d) ala 1) EtMgBr 2) H3O+ e) H2N سكر CuLi NH2 1) SOCI2 2) EtMgBr 3) H3O+ NC H3O+ Δarrow_forwardThere are 48 pairs of students in the following table. Each pair has quantitatively determined the mass of taurine in a 250 mL can of the popular energy drink marketed as “Munster” using High Performance Liquid Chromatography (HPLC). The class results are presented below: QUESTION: Summarise and report these results including an indication of measurement uncertainty. In both calculation samples calculate if an outlier is present, max value, number of samples, mean, standard deviation, g (suspect), g (critical) and t (critical). Mass of Taurine (mg) Mass of Taurine (mg) (Table continued) 152.01 152.23 151.87 151.45 154.11 152.64 152.98 153.24 152.88 151.45 153.49 152.48 150.68 152.33 151.52 153.63 152.48 151.68 153.17 153.40 153.77 153.67 152.34 153.16 152.57 153.02 152.86 151.50 151.23 152.57 152.72 151.54 146.47 152.38 152.44 152.54 152.53 152.54 151.32…arrow_forward
- Indicate the rate expressions for reactions that have order 0, 1, and 2.arrow_forwardPROBLEMS Q1) Label the following salts as either acidic, basic, or neutral a) Fe(NOx) c) AlBr b) NH.CH COO d) HCOON (1/2 mark each) e) Fes f) NaBr Q2) What is the pH of a 0.0750 M solution of sulphuric acid?arrow_forward8. Draw all the resonance forms for each of the fling molecules or ions, and indicate the major contributor in each case, or if they are equivalent (45) (2) -PH2 سمة مدarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





