A sinusoidal wave in a rope is described by the wave function y = 0.20 sin ( 0.75 π x + 18 π t ) where x and y are in meters and t is in seconds. The rope has a linear mass density of 0.250 kg/m. The tension in the rope is provided by an arrangement like the one illustrated in Figure P16.13. What is the mass of the suspended object?
A sinusoidal wave in a rope is described by the wave function y = 0.20 sin ( 0.75 π x + 18 π t ) where x and y are in meters and t is in seconds. The rope has a linear mass density of 0.250 kg/m. The tension in the rope is provided by an arrangement like the one illustrated in Figure P16.13. What is the mass of the suspended object?
A sinusoidal wave in a rope is described by the wave function
y
=
0.20
sin
(
0.75
π
x
+
18
π
t
)
where x and y are in meters and t is in seconds. The rope has a linear mass density of 0.250 kg/m. The tension in the rope is provided by an arrangement like the one illustrated in Figure P16.13. What is the mass of the suspended object?
Part C
Find the height yi
from which the rock was launched.
Express your answer in meters to three significant figures.
Learning Goal:
To practice Problem-Solving Strategy 4.1 for projectile motion problems.
A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration.
PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems
MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model.
VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ.
SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Wave Speed on a String - Tension Force, Intensity, Power, Amplitude, Frequency - Inverse Square Law; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=vEzftaDL7fM;License: Standard YouTube License, CC-BY