Concept explainers
A transverse wave on a siring is described by the wave function
where x and y are in meters and t is in seconds. Determine (a) the transverse speed and (b) the transverse acceleration at t = 0.200 s for an element of the string located at x = 1.60 m. What are (c) the wavelength, (d) the period, and (e) the speed of propagation of this wave?
(a)
The transverse speed for an element located at
Answer to Problem 16.15P
The transverse speed for an element located at
Explanation of Solution
Given info: The wave function of the wave is
The standard equation of the transverse wave is,
Here,
The wave function give is,
Compare the equation (1) and equation (2).
The formula to calculate frequency is,
Substitute
The change in position with respect to time gives the transverse speed of the wave.
Here,
Substitute
Differentiate and solve the above expression for
Substitute
Conclusion:
Therefore, the transverse speed for an element located at
(b)
To write: The transverse acceleration of the wave.
Answer to Problem 16.15P
The transverse acceleration of the wave is
Explanation of Solution
Given info: The wave function of the wave is
The change in velocity with respect to time gives the acceleration.
Here,
From equation (1), the speed is,
Substitute
Differentiate and solve the above expression for
Substitute
Solve the above expression.
Conclusion:
Therefore, the transverse acceleration of the wave is
(c)
The wavelength of the wave.
Answer to Problem 16.15P
The wavelength of the wave is
Explanation of Solution
Given info: The wave function of the wave is
The formula to calculate wavelength of the wave is,
Here,
Substitute
Solve the above expression for
Conclusion:
Therefore, the wavelength of the wave is
(d)
The period of the wave.
Answer to Problem 16.15P
The period of the wave is
Explanation of Solution
Given info: The wave function of the wave is
The formula to calculate frequency is,
Here,
Substitute
The formula to calculate time period of the wave is,
Here,
Substitute
Conclusion:
Therefore, the period of the wave is
(E)
The speed of propagation of wave.
Answer to Problem 16.15P
The speed of propagation of wave is
Explanation of Solution
Given info: The wave function of the wave is
The formula to calculate speed of propagation of wave is,
Here,
Substitute
Conclusion:
Therefore, the speed of propagation of wave is
Want to see more full solutions like this?
Chapter 16 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- Find the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring). d Ag = 2.51 dFe ×arrow_forwardShow that the units 1 v2/Q = 1 W, as implied by the equation P = V²/R. Starting with the equation P = V²/R, we can get an expression for a watt in terms of voltage and resistance. The units for voltage, V, are equivalent to [? v2 v2 A, are equivalent to J/C ✓ X . Therefore, 1 = 1 = 1 A V1 J/s Ω V-A X = 1 W. . The units for resistance, Q, are equivalent to ? The units for current,arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- What is the equivalent resistance between points A and B of the network shown in the figure? A • 12 B 4.0 6.0 Ω 8.0 Ωarrow_forwardAccording to the provided information answer the question accorrding to grade 11 physics Jerry has decided to give up his part-time job for a new career, cat-burglar! Jerry loves the idea of dressing up like a cat all day and of course the chance of meeting Cat Woman! On Jerry's first "job" he figures out his escape plan. He travels 3.0 km south for 15 minutes and then 8.0 km west for 1.5 hours before reaching his house. Draw a sketch diagram of the path he took with all the appropriate labels.arrow_forwardPlease solve and answer all parts of the question correctly please. Thank you!!arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning