ALEKS 360; 18WKS F/ GEN. CHEMISTRY >I<
13th Edition
ISBN: 9781264070077
Author: Chang
Publisher: INTER MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 16, Problem 16.41QP
Explain how an acid-base indicator works in a titration. What are the criteria for choosing an indicator for a particular
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Explain how an acid-base indicator works in a titration. What are the criteria for choosing an indicator for a particular acid-base titration?
Describe the process of calculating a weak acid–strong base Titration?
2
A student conducted an acid-base titration but neglected to condition the burette properly. As
a result, the student began the titration but the stem of the burette was not filled with titrant. How
will this error impact the experimental molarity determined from the titration data? Specifically
discuss the effect on the measured values used to calculate the experimental molarity
Chapter 16 Solutions
ALEKS 360; 18WKS F/ GEN. CHEMISTRY >I<
Ch. 16.2 - What is the pH of a solution containing 0.30 M...Ch. 16.2 - Prob. 1RCFCh. 16.2 - What is the pH of a solution containing 0.25 M...Ch. 16.3 - Which of the following couples are buffer systems:...Ch. 16.3 - Calculate the pH of the 0.30 M NH3/0.36 M NH4Cl...Ch. 16.3 - How would you prepare a liter of carbonate buffer...Ch. 16.3 - Calculate the pH of the 0.40 M HF/0.48 M KF buffer...Ch. 16.3 - The diagrams (a)(d) represent solutions containing...Ch. 16.4 - Exactly 100 mL of 0.10 M nitrous acid (HNO2) are...Ch. 16.4 - Calculate the pH at the equivalence point in the...
Ch. 16.4 - For which of the following titrations will the pH...Ch. 16.4 - Calculate the pH at the equivalence point in the...Ch. 16.4 - calculate the pH in the titration of 50.0 mL of...Ch. 16.5 - Referring to Table 16.1, specify which indicator...Ch. 16.5 - Under what conditions will the end point of an...Ch. 16.6 - The solubility of lead chromate (PbCrO4) is 4.5 ...Ch. 16.6 - Calculate the solubility of silver chloride (AgCl)...Ch. 16.6 - Prob. 10PECh. 16.6 - Prob. 1RCFCh. 16.6 - Will a precipitate form when 50.0 mL of 0.0100 M...Ch. 16.6 - The diagrams (a)(d) represent solutions of AgCl,...Ch. 16.7 - The solubility products of AgCl and Ag3PO4 are 1.6...Ch. 16.7 - AgNO3 is slowly added to a solution that contains...Ch. 16.8 - Prob. 12PECh. 16.8 - Calculate the molar solubility of CaF2 in 0.0015 M...Ch. 16.9 - Is the solubility of the following compounds...Ch. 16.9 - Calculate whether or not a precipitate will form...Ch. 16.9 - Prob. 1RCFCh. 16.10 - Prob. 15PECh. 16.10 - Calculate the molar solubility of AgBr in a 1.0 M...Ch. 16.10 - Prob. 1RCFCh. 16.11 - An aqueous solution contains both Zn2+ and Pb2+...Ch. 16 - Use Le Chteliers principle to explain how the...Ch. 16 - Describe the effect on pH (increase, decrease, or...Ch. 16 - The pKas of two monoprotic acids HA and HB are 5.9...Ch. 16 - Determine the pH of (a) a 0.40 M CH3COOH solution,...Ch. 16 - Determine the pH of (a) a 0.20 M NH3 solution, (b)...Ch. 16 - What is a buffer solution? What constitutes a...Ch. 16 - Which of the following has the greatest buffer...Ch. 16 - Which of the following solutions can act as a...Ch. 16 - Which of the following solutions can act as a...Ch. 16 - Calculate the pH of the buffer system made up of...Ch. 16 - Calculate the pH of the following two buffer...Ch. 16 - The pH of a bicarbonate-carbonic acid buffer is...Ch. 16 - What is the pH of the buffer 0.10 M Na2HPO4/0.15 M...Ch. 16 - The pH of a sodium acetateacetic acid buffer is...Ch. 16 - The pH of blood plasma is 7.40. Assuming the...Ch. 16 - Calculate the pH of the 0.20 M NH3/0.20 M NH4Cl...Ch. 16 - Calculate the pH of 1.00 L of the buffer 1.00 M...Ch. 16 - A student is asked to prepare a buffer solution at...Ch. 16 - The diagrams (a)(d) contain one or more of the...Ch. 16 - The diagrams shown here represent solutions...Ch. 16 - How much NaOH (in moles) must be added to 1 L of a...Ch. 16 - How much HCl (in moles) must be added to 1 L of a...Ch. 16 - Briefly describe what happens in an acid-base...Ch. 16 - Sketch titration curves for the following...Ch. 16 - A 0.2688-g sample of a monoprotic acid neutralizes...Ch. 16 - A 5.00-g quantity of a diprotic acid was dissolved...Ch. 16 - In a titration experiment, 12.5 mL of 0.500 M...Ch. 16 - In a titration experiment, 20.4 mL of 0.883 M...Ch. 16 - A 0.1276-g sample of an unknown monoprotic acid...Ch. 16 - A solution is made by mixing 5.00 102 mL of 0.167...Ch. 16 - Calculate the pH at the equivalence point for the...Ch. 16 - Calculate the pH at the equivalence point for the...Ch. 16 - A 25.0-mL solution of 0.100 M CH3COOH is titrated...Ch. 16 - A 10.0-mL solution of 0.300 M NH3 is titrated with...Ch. 16 - The diagrams shown here represent solutions at...Ch. 16 - Prob. 16.38QPCh. 16 - A 0.054 M HNO2 solution is titrated with a KOH...Ch. 16 - A student titrates an unknown monoprotic acid with...Ch. 16 - Explain how an acid-base indicator works in a...Ch. 16 - The amount of indicator used in an acid-base...Ch. 16 - Referring to Table 16.1, specify which indicator...Ch. 16 - A student carried out an acid-base titration by...Ch. 16 - The ionization constant Ka of an indicator HIn is...Ch. 16 - Use BaSO4 to distinguish between solubility, molar...Ch. 16 - Why do we usually not quote the Ksp values for...Ch. 16 - Write balanced equations and solubility product...Ch. 16 - Write the solubility product expression for the...Ch. 16 - How can we predict whether a precipitate will form...Ch. 16 - Silver chloride has a larger Ksp than silver...Ch. 16 - From the solubility data given, calculate the...Ch. 16 - The molar solubility of MnCO3 is 4.2 106 M. What...Ch. 16 - The solubility of an ionic compound MX (molar mass...Ch. 16 - The solubility of an ionic compound M2X3 (molar...Ch. 16 - Using data from Table 16.2, calculate the molar...Ch. 16 - Prob. 16.59QPCh. 16 - The pH of a saturated solution of a metal...Ch. 16 - If 20.0 mL of 0.10 M Ba(NO3)2 are added to 50.0 mL...Ch. 16 - A volume of 75 mL of 0.060 M NaF is mixed with 25...Ch. 16 - Solid NaI is slowly added to a solution that is...Ch. 16 - Find the approximate pH range suitable for the...Ch. 16 - How does the common ion effect influence...Ch. 16 - Prob. 16.66QPCh. 16 - How many grams of CaCO3 will dissolve in 3.0 102...Ch. 16 - The solubility product of PbBr2 is 8.9 106....Ch. 16 - Calculate the molar solubility of AgCl in a 1.00-L...Ch. 16 - Calculate the molar solubility of BaSO4 (a) in...Ch. 16 - Prob. 16.71QPCh. 16 - Which of the following will be more soluble in...Ch. 16 - Prob. 16.73QPCh. 16 - Calculate the molar solubility of Fe(OH)2 in a...Ch. 16 - The solubility product of Mg(OH)2 is 1.2 1011....Ch. 16 - Calculate whether or not a precipitate will form...Ch. 16 - If 2.50 g of CuSO4 are dissolved in 9.0 102 mL of...Ch. 16 - Calculate the concentrations of Cd2+, Cd(CN3)42,...Ch. 16 - If NaOH is added to 0.010 M Al3+, which will be...Ch. 16 - Calculate the molar solubility of AgI in a 1.0 M...Ch. 16 - Both Ag+ and Zn2+ form complex ions with NH3....Ch. 16 - Explain, with balanced ionic equations, why (a)...Ch. 16 - Outline the general procedure of qualitative...Ch. 16 - Give two examples of metal ions in each group (1...Ch. 16 - In a group 1 analysis, a student obtained a...Ch. 16 - In a group 1 analysis, a student adds HCl acid to...Ch. 16 - Both KCl and NH4Cl are white solids. Suggest one...Ch. 16 - Describe a simple test that would enable you to...Ch. 16 - To act as an effective buffer, the concentrations...Ch. 16 - The pKa of the indicator methyl orange is 3.46....Ch. 16 - The iodide impurity in a 4.50-g sample of a metal...Ch. 16 - A sodium acetate-acetic acid buffer solution was...Ch. 16 - Prob. 16.95QPCh. 16 - A 200-mL volume of NaOH solution was added to 400...Ch. 16 - The pKa of butyric acid (HBut) is 4.7. Calculate...Ch. 16 - A solution is made by mixing 5.00 102 mL of 0.167...Ch. 16 - Cd(OH)2 is an insoluble compound. It dissolves in...Ch. 16 - A student mixes 50.0 mL of 1.00 M Ba(OH)2 with...Ch. 16 - For which of the following reactions is the...Ch. 16 - A 2.0-L kettle contains 116 g of boiler scale...Ch. 16 - Equal volumes of 0.12 M AgNO3 and 0.14 M ZnCl2...Ch. 16 - Prob. 16.104QPCh. 16 - Prob. 16.105QPCh. 16 - A volume of 25.0 mL of 0.100 M HCl is titrated...Ch. 16 - The molar solubility of Pb(IO3)2 in a 0.10 M NaIO3...Ch. 16 - When a KI solution was added to a solution of...Ch. 16 - Barium is a toxic substance that can seriously...Ch. 16 - Prob. 16.110QPCh. 16 - Solid NaBr is slowly added to a solution that is...Ch. 16 - Cacodylic acid is (CH3)2AsO2H. Its ionization...Ch. 16 - Radiochemical techniques are useful in estimating...Ch. 16 - The molar mass of a certain metal carbonate, MCO3,...Ch. 16 - Acid-base reactions usually go to completion....Ch. 16 - Calculate x, which is the number of molecules of...Ch. 16 - Describe how you would prepare a 1-L 0.20 M...Ch. 16 - Prob. 16.118QPCh. 16 - Prob. 16.119QPCh. 16 - What reagents would you employ to separate the...Ch. 16 - Look up the Ksp values for BaSO4 and SrSO4 in...Ch. 16 - In principle, amphoteric oxides, such as Al2O3 and...Ch. 16 - Prob. 16.123QPCh. 16 - When lemon juice is squirted into tea, the color...Ch. 16 - How many milliliters of 1.0 M NaOH must be added...Ch. 16 - The maximum allowable concentration of Pb2+ ions...Ch. 16 - Which of the following solutions has the highest...Ch. 16 - Prob. 16.129QPCh. 16 - Water containing Ca2+ and Mg2+ ions is called hard...Ch. 16 - Prob. 16.131QPCh. 16 - Prob. 16.132QPCh. 16 - (a) Referring to Figure 16.6, describe how you...Ch. 16 - Prob. 16.135QPCh. 16 - One way to distinguish a buffer solution with an...Ch. 16 - Prob. 16.137QPCh. 16 - A sample of 0.96 L of HCl at 372 mmHg and 22C is...Ch. 16 - (a) Assuming complete dissociation and no ion-pair...Ch. 16 - Calculate the maximum mass (in grams) of each of...Ch. 16 - A 1.0-L saturated silver carbonate solution at 5C...Ch. 16 - The two curves shown represent the titration of...Ch. 16 - Prob. 16.143QPCh. 16 - A 100-mL 0.100 M CuSO4 solution is mixed with a...Ch. 16 - The titration curve shown represents the titration...Ch. 16 - The titration curve shown represents the titration...Ch. 16 - Use appropriate equations to account for the...Ch. 16 - Prob. 16.148QPCh. 16 - Aspirin is a weak acid with pKa = 3.5. What is the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- When might a pH meter be better than an indicator to determine the end point of an acid-base titration?arrow_forwardTwo samples of 1.00 M HCl of equivalent volumes are prepared. One sample is titrated to the equivalence point with a 1.00 M solution of sodium hydroxide, while the other sample is titrated to the equivalence point with a 1.00 M solution of calcium hydroxide. a Compare the volumes of sodium hydroxide and calcium hydroxide required to reach the equivalence point for each titration. b Determine the pH of each solution halfway to the equivalence point. c Determine the pH of each solution at the equivalence point.arrow_forwardBriefly describe how a buffer solution can control the pH of a solution when strong acid is added and when strong base is added. Use NH3/NH4Cl as an example of a buffer and HCl and NaOH as the strong acid and strong base.arrow_forward
- Consider all acid-base indicators discussed in this chapter. Which of these indicators would be suitable for the titration of each of these? (a) NaOH with HClO4 (b) acetic acid with KOH (c) NH3 solution with HBr (d) KOH with HNO3 Explain your choices.arrow_forwardA solution of weak base is titrated to the equivalence point with a strong acid. Which one of the following statements is most likely to be correct? a The pH of the solution at the equivalence point is 7.0. b The pH of the solution is greater than 13.0. c The pH of the solution is less than 2.0. d The pH of the solution is between 2.0 and 7.0. e The pH of the solution is between 7.0 and 13.0. The reason that best supports my choosing the answer above is a Whenever a solution is titrated with a strong acid, the solution will be very acidic. b Because the solution contains a weak base and the acid (titrant) is used up at the equivalence point, the solution will be basic. c Because the solution contains the conjugate acid of the weak base at the equivalence point, the solution will be acidic.arrow_forwardA buffer solution has a pH value of 9.8. Which value in the set of pH values 8.79.79.89.910.9 is the most likely value for the buffer solution pH after a. a small amount of strong acid has been added? b. a small amount of strong base has been added?arrow_forward
- Methyl orange, HMO, is a common acid-base indicator. In solution it ionizes according to the equation: HMOaqH+aq+MO-aqredyellow If methyl orange is added to distilled water, the solution turns yellow. If 1 drop or two of 6 M HCl is added to the yellow solution, it turns red. If to that solution one adds a few drops of 6 M NaOH, the color reverts to yellow. a. Why does adding 6 M HCl to the yellow solution of methyl orange tend to cause the color to change to red? Note that in solution HCl exists as H+ and Cl- ions. b. Why does adding 6 M NaOH to the red solution tend to make it turn back to yellow? Note that in solution NaOH exists as Na+ and OH- ions. How does increasing OH- shift Reaction 3 in the discussion section? How would the resulting change in H+ affect the dissociation reaction of HMO?arrow_forwardA quantity of 0.15 M hydrochloric acid is added to a solution containing 0.10 mol of sodium acetate. Some of the sodium acetate is converted to acetic acid, resulting in a final volume of 650 mL of solution. The pH of the final solution is 4.56. a What is the molar concentration of the acetic acid? b How many milliliters of hydrochloric acid were added to the original solution? c What was the original concentration of the sodium acetate?arrow_forwardAcidbase indicators mark the end point of titrations by magically turning a different color. Explain the magic behind acidbase indicators.arrow_forward
- Explain why even though an aqueous acetic acid solution contains acetic acid and acetate ions, it cannot be a buffer.arrow_forwardWhat is an acidbase indicator? Define the equivalence (stoichiometric) point and the end point of a titration. Why should you choose an indicator so that the two points coincide? Do the pH values of the two points have to be within 0.01 pH unit of each other? Explain.arrow_forwardAnother way to treat data from a pH titration is to graph the absolute value of the change in pH per change in milliliters added versus milliliters added (pH/mL versus mL added). Make this graph using your results from Exercise 61. What advantage might this method have over the traditional method for treating titration data?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Living By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Living By Chemistry: First Edition Textbook
Chemistry
ISBN:9781559539418
Author:Angelica Stacy
Publisher:MAC HIGHER
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Acid-Base Equilibrium; Author: Bozeman Science;https://www.youtube.com/watch?v=l5fk7HPmo5g;License: Standard YouTube License, CC-BY
Introduction to Titrimetric analysis; Author: Vidya-mitra;https://www.youtube.com/watch?v=uykGVfn9q24;License: Standard Youtube License