Organic Chemistry: Principles and Mechanisms (Second Edition)
Organic Chemistry: Principles and Mechanisms (Second Edition)
2nd Edition
ISBN: 9780393663556
Author: Joel Karty
Publisher: W. W. Norton & Company
bartleby

Concept explainers

Question
Book Icon
Chapter 16, Problem 16.32P
Interpretation Introduction

Interpretation:

The structure for the compound having molecular formula C8H10O is to be proposed based on the distinct signals in its 1H NMR spectrum.

Concept introduction:

In 1HNMR spectroscopy, protons in different environments within a molecule have different chemical shifts, that is, they experience different degrees of shielding.

In addition to chemical shift, a 1H NMR spectrum provides structural information based on the number of signals, which tells how many different kinds of protons are there; integrated areas, which tells the ratios of the various kinds of protons; and splitting pattern, which gives information about the number of protons that are within two or three bonds of the one giving the signal. Spin-spin splitting of NMR signals results from the coupling of the nuclear spins that are separated by two bonds (geminal coupling) or three bonds (vicinal coupling). In these cases, the number of peaks into which a signal is split is equal to (n+1), where n is the number of protons to which the proton in question is coupled. Protons that have the same chemical shift do not split each other’s signals.

Complicated splitting patterns can result when a proton is unequally coupled to two or more protons that are different from one another.

The ideal range for alkane protons is δ0.9- δ1.4; for alcohol, it is δ2- δ5.0, and for aromatic protons, it is δ6.5- δ8.5.

The chemical shift of a signal prompts about the aromatic rings, double bonds, or nearby electronegative atoms. The integration of each signal suggests the number of protons responsible for that signal. The splitting pattern of a signal indicates the number of neighboring protons that are distinct from the protons responsible for that signal. To deduce the structure of an unknown compound, the first step is to find the index of hydrogen deficiency if the molecular formula is given. Based on the data given in the 1H NMR, molecular fragments with multiple carbon atoms can be built.

Blurred answer
Students have asked these similar questions
2. Specify the solvent and reagent(s) required to carry out each of the following FGI. If two reagent sets must be used for the FGI, specify the solvent and reagent(s) for each reagent set. If a reaction cannot be carried out with reagents (sets) class, write NP (not possible) in the solvent box for reagent set #1. Use the letter abbreviation for each solvent; use a number abbreviation for reagent(s). Solvents: CH2Cl2 (A); H₂O (B); Reagents: HBr (1); R₂BH (6); H2SO4 (2); CH3OH (C); Br₂ (3); CH3CO₂H (D) NaHCO3 (4); Hg(OAc)2 (5); H₂O2/HO (7); NaBH4 (8) Reagent Set #1 Reagent Set #2 FGI + enant OH Solvent Reagent(s) Solvent Reagent(s)
Germanium (Ge) is a semiconductor with a bandgap of 2.2 eV.  How could you dope Ge to make it a p-type semiconductor with a larger bandgap? Group of answer choices It is impossible to dope Ge and have this result in a larger bandgap. Dope the Ge with silicon (Si) Dope the Ge with gallium (Ga) Dope the Ge with phosphorus (P)
Which of the following semiconductors would you choose to have photons with the longest possible wavelengths be able to promote electrons to the semiconductor's conduction band? Group of answer choices Si Ge InSb CdS

Chapter 16 Solutions

Organic Chemistry: Principles and Mechanisms (Second Edition)

Ch. 16 - Prob. 16.11PCh. 16 - Prob. 16.12PCh. 16 - Prob. 16.13PCh. 16 - Prob. 16.14PCh. 16 - Prob. 16.15PCh. 16 - Prob. 16.16PCh. 16 - Prob. 16.17PCh. 16 - Prob. 16.18PCh. 16 - Prob. 16.19PCh. 16 - Prob. 16.20PCh. 16 - Prob. 16.21PCh. 16 - Prob. 16.22PCh. 16 - Prob. 16.23PCh. 16 - Prob. 16.24PCh. 16 - Prob. 16.25PCh. 16 - Prob. 16.26PCh. 16 - Prob. 16.27PCh. 16 - Prob. 16.28PCh. 16 - Prob. 16.29PCh. 16 - Prob. 16.30PCh. 16 - Prob. 16.31PCh. 16 - Prob. 16.32PCh. 16 - Prob. 16.33PCh. 16 - Prob. 16.34PCh. 16 - Prob. 16.35PCh. 16 - Prob. 16.36PCh. 16 - Prob. 16.37PCh. 16 - Prob. 16.38PCh. 16 - Prob. 16.39PCh. 16 - Prob. 16.40PCh. 16 - Prob. 16.41PCh. 16 - Prob. 16.42PCh. 16 - Prob. 16.43PCh. 16 - Prob. 16.44PCh. 16 - Prob. 16.45PCh. 16 - Prob. 16.46PCh. 16 - Prob. 16.47PCh. 16 - Prob. 16.48PCh. 16 - Prob. 16.49PCh. 16 - Prob. 16.50PCh. 16 - Prob. 16.51PCh. 16 - Prob. 16.52PCh. 16 - Prob. 16.53PCh. 16 - Prob. 16.54PCh. 16 - Prob. 16.55PCh. 16 - Prob. 16.56PCh. 16 - Prob. 16.57PCh. 16 - Prob. 16.58PCh. 16 - Prob. 16.59PCh. 16 - Prob. 16.60PCh. 16 - Prob. 16.61PCh. 16 - Prob. 16.62PCh. 16 - Prob. 16.63PCh. 16 - Prob. 16.64PCh. 16 - Prob. 16.65PCh. 16 - Prob. 16.66PCh. 16 - Prob. 16.67PCh. 16 - Prob. 16.68PCh. 16 - Prob. 16.69PCh. 16 - Prob. 16.70PCh. 16 - Prob. 16.71PCh. 16 - Prob. 16.72PCh. 16 - Prob. 16.73PCh. 16 - Prob. 16.74PCh. 16 - Prob. 16.75PCh. 16 - Prob. 16.76PCh. 16 - Prob. 16.77PCh. 16 - Prob. 16.78PCh. 16 - Prob. 16.79PCh. 16 - Prob. 16.80PCh. 16 - Prob. 16.81PCh. 16 - Prob. 16.82PCh. 16 - Prob. 16.83PCh. 16 - Prob. 16.84PCh. 16 - Prob. 16.85PCh. 16 - Prob. 16.86PCh. 16 - Prob. 16.87PCh. 16 - Prob. 16.88PCh. 16 - Prob. 16.89PCh. 16 - Prob. 16.1YTCh. 16 - Prob. 16.2YTCh. 16 - Prob. 16.3YTCh. 16 - Prob. 16.4YTCh. 16 - Prob. 16.5YTCh. 16 - Prob. 16.6YTCh. 16 - Prob. 16.7YTCh. 16 - Prob. 16.8YTCh. 16 - Prob. 16.9YTCh. 16 - Prob. 16.10YTCh. 16 - Prob. 16.11YTCh. 16 - Prob. 16.12YTCh. 16 - Prob. 16.13YTCh. 16 - Prob. 16.14YTCh. 16 - Prob. 16.15YTCh. 16 - Prob. 16.16YTCh. 16 - Prob. 16.17YTCh. 16 - Prob. 16.18YTCh. 16 - Prob. 16.19YTCh. 16 - Prob. 16.20YTCh. 16 - Prob. 16.21YTCh. 16 - Prob. 16.22YTCh. 16 - Prob. 16.23YTCh. 16 - Prob. 16.24YTCh. 16 - Prob. 16.25YTCh. 16 - Prob. 16.26YTCh. 16 - Prob. 16.27YTCh. 16 - Prob. 16.28YTCh. 16 - Prob. 16.29YTCh. 16 - Prob. 16.30YTCh. 16 - Prob. 16.31YTCh. 16 - Prob. 16.32YTCh. 16 - Prob. 16.33YTCh. 16 - Prob. 16.34YT
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Organic Chemistry
    Chemistry
    ISBN:9781305080485
    Author:John E. McMurry
    Publisher:Cengage Learning
    Text book image
    Organic Chemistry: A Guided Inquiry
    Chemistry
    ISBN:9780618974122
    Author:Andrei Straumanis
    Publisher:Cengage Learning
    Text book image
    Organic Chemistry
    Chemistry
    ISBN:9781305580350
    Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
    Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305080485
Author:John E. McMurry
Publisher:Cengage Learning
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning