(a)
Interpretation:
The vapor pressure lowering of aqueous solution of
Concept Introduction:
Raoult’s law:
It states that the equilibrium vapor pressure of the solvent over a solution is directly proportional to the mole fraction of the solvent in the solution.
The expression for the vapor pressure lowering is given below.
Where,
(a)
Answer to Problem 16.26P
The vapor pressure lowering for the aqueous solution of ethanol is
Explanation of Solution
Given that the molality of aqueous solution of ethanol is
The number of moles of ethanol can be calculated as given below.
The mole fraction of ethanol can be calculated as given below.
The vapor pressure of water at
The vapor pressure lowering can be calculated as given below.
Therefore, the vapor pressure lowering for the aqueous solution of ethanol is
(b)
Interpretation:
The vapor pressure lowering of aqueous solution of
Concept Introduction:
Refer to part (a).
(b)
Answer to Problem 16.26P
The vapor pressure lowering for the aqueous solution of
Explanation of Solution
Given that the molality of aqueous solution of thallium (III) chloride is
The number of moles of thallium chloride can be calculated as given below.
The mole fraction of thallium chloride can be calculated as given below.
The vapor pressure of water at
The vapor pressure lowering can be calculated as given below.
Therefore, the vapor pressure lowering for the aqueous solution of thallium chloride is
(c)
Interpretation:
The vapor pressure lowering of aqueous solution of
Concept Introduction:
Refer to part (a).
(c)
Answer to Problem 16.26P
The vapor pressure lowering for the aqueous solution of
Explanation of Solution
Given that the molality of aqueous solution of
The number of moles of
The mole fraction of
The vapor pressure of water at
The vapor pressure lowering can be calculated as given below.
Therefore, the vapor pressure lowering for the aqueous solution of
Want to see more full solutions like this?
Chapter 16 Solutions
General Chemistry
- 142. A mixture of H2(g) and N2(g) has a density of 0.216 g/liter at 300 K and 500 torr. What is the mole fraction composition of the mixture?arrow_forwardOne liter of N2(g) at 2.1 bar and two liters of Ar(g) at 3.4 bar are mixed in a 4.0 liter flask to form an ideal gas mixture. Calculate the value of the final pressure of the mixture if the initial and final temperature of the gases are the same. Repeat this calculation if the initial temperature of the N2(g) and Ar(g) are 304 K and 402 K, respectively, and the final temperature of the mixture is 377 K.arrow_forward10 5 4. These four 'H NMR spectra were recorded from different isomers with molecular formula CsH,CIO. They all contain a carbonyl group. Determine the structure of the different isomers. 0 10 5 0 10 5 10 9 8 7 6 5 4 3. 1 0 9 10 10 66 9 0 10 9 10 5 1 8 7 6 5 3 2 -a 8 7 6 5 1 10 9 8 7 6 5 22 2 1 0 3 2 16 1 0 3 2 1 2 6 0arrow_forward
- Use the expression below to ⚫ calculate its value and report it to the proper number of significant digits (you may need to round your answer). ⚫ calculate the % error (or % relative error or % inherent error) ⚫ calculate the absolute error. (20.54±0.02 × 0.254±0.003) / (3.21±0.05) = Value: % Error: Absolute error: ± | % (only 1 significant digit) (only 1 significant digit)arrow_forwardIn each case (more ductile, more brittle, more tough or resistant), indicate which parameter has a larger value. parameter Elastic limit Tensile strength more ductile Strain at break Strength Elastic modulus more fragile more tough or resistantarrow_forwardNonearrow_forward
- What functional groups are present in this IRarrow_forwardIn each case (more ductile, more brittle, more tough or resistant), indicate which parameter has a larger value. parameter Elastic limit Tensile strength more ductile Strain at break Strength Elastic modulus more fragile more tough or resistantarrow_forward4) A typical bottle of pop holds carbon dioxide at a pressure of 5 atm. What is the concentration of carbon dioxide in th solution? 5) A stream flowing over rocks and such is exposed to the atmosphere and well aerated. What would be the nitrogen concentration in the water at 25°C? (Air pressure is 1.000 bar.)arrow_forward
- Use the expression below to ⚫ calculate its value and report it to the proper number of significant digits (you may need to round your answer). ⚫ calculate the % error (or % relative error or % inherent error) ⚫ calculate the absolute error. (30.078±0.003) - (20.174±0.001) + (9.813±0.005) = Value: % Error: absolute error: ± % (only 1 significant digit) (only 1 significant digit)arrow_forwardDon't used Ai solution and don't used hand raitingarrow_forwardCircle the letter next to the most appropriate response. 1) Which is likely to be the least soluble with water? a) hexane b) acetone c) trichloromethane d) trinitro-toluene 2) Which is likely to be the most soluble in 3,4-dimethyloctane? a) hexane b) acetone c) trichloromethane d) trinitro-toluene 3) When ammonium nitrate is dissolved in water, the solution: a) gets warmer. b) gets colder. c) stays the same temperature. d) is none of the above because potassium nitrate is insoluble.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY