Elementary Surveying (14th Edition)
Elementary Surveying (14th Edition)
14th Edition
ISBN: 9780133758887
Author: Charles D. Ghilani, Paul R. Wolf
Publisher: PEARSON
bartleby

Concept explainers

Question
Book Icon
Chapter 16, Problem 16.25P
To determine

Construct A and L matrices.

A= 100000010000001000000100000010000001100000010000001000000100000010000001

L= 1,164,499.3874,660,600.8794,182,158.2131,164,499.4004,660,600.8844,182,158.2141,168,947.8494,650,766.2554,191,851.2711,168,947.8414,650,766.2494,191,851.263

Given that

Baseline vector are given as:

Elementary Surveying (14th Edition), Chapter 16, Problem 16.25P , additional homework tip  1

Elementary Surveying (14th Edition), Chapter 16, Problem 16.25P , additional homework tip  2

Explanation:

Writing observation equation for X coordinate for bonnieto ray:

   XBR= XB+ ΔXBR+v1

WHERE

XB= X coordinate of the station bonnie = 1,161,121.599m

ΔXB-R= X component in baseline vector = 3.377.788m

ʋ1= residual

   XBR=1,161,121.599+3.377.788+v1          = 1,164,499.387+ v1

Writing observation equation for Y coordinate for Bonnie to Ray:

   YBR= YB+ ΔYBR+v2WHEREYB= Y coordinate of the station BONNIE = 4,655,872.977ΔYBR= Y component in baseline vector = 4,727.902v2= residual YBR=4,655,872.977+4,727.902+v2          = 4,660,600.879+ v2

Writing observation equation for Z coordinate for Bonnie to Ray:

   ZBR= XB+ ΔZBR+v3WHEREZB= Z coordinate of the station bonnie = 4,188,330.232mΔZBR= Z component in baseline vector = 6,172.019mv3= residual ZJT=4,188,330.2326,172.019+v3          = 4,182,158.213+ v3

Writing observation equation for X coordinate for tom to herb:

   XTH= XT+ ΔXTH+v4WHEREXT= X coordinate of the station Tom = 1,176,398.558mΔXTH= X component in baseline vector = 7,450.717mv4= residual XTH=1,176,398.558 7,450.717+v4          = 1,168,947.841+ v4

Writing observation equation for y coordinate for tom to herb:

   YTH= YT+ ΔYTH+v5WHEREYT= Y coordinate of the station tom = 4,653,039.613mΔYTH= Y component in baseline vector = 2,273.364mv5= residual YAT=4,653,039.613+2,273.364+ v5          = 4,650,766.249+ v5

Writing observation equation for Z coordinate for tom to herb

   ZTH= ZT+ ΔZTH+v6WHEREZT= Z coordinate of the station tom = 4,187,198.360mΔZTH= Z component in baseline vector = 4652.903mv6= residual ZTH=4,187,198.360m +4652.903+v6          = 4,191,851.263+ v6

Writing observation equations for X coordinate for bonnie to herb:

   XBH= XB+ ΔXBH+v7WHEREXB= X coordinate of the station Tom = 1,161,121.599mΔXBH= X component in baseline vector = 7826.248mv7= residual XBH=1,161,121.599+7826.248+v7          = 1,168,947.847+ v7

Writing observation equation for Y coordinates for bonnie to herb:

YB-H= YB+ ΔYB-H8WHERE

YB= Y coordinate of the station Tom = -4,655,872.977m

ΔYB-H= Y component in baseline vector = 5,106.722m

ʋ8= residual

XA-T=4,655,872.977+5,106.722+ʋ8 = -4,650,766.255+ ʋ8

Writing observation equation for Z coordinates for bonnie to herb:

   ZBH= ZB+ ΔZBH+v9Where,ZB= Z coordinate of the station Tom = 4,188,330.232mΔZBH= Z component in baseline vector = 3,521.039m v9= residual ZBH=4,188,330.232+3,521.039+v9          = 4,191,851.271+ v9

Writing observation equation for X coordinate for tom to ray:

   XTR= XT+ ΔXTR+v10WHEREXT= X coordinate of the station Tom = 1,176,398.558mΔXTR= X component in baseline vector = 11,899.158mv10= residual XTR=1,176,398.558 11,899.15+v10          = 1,164,499.400+ v10

Writing observation equation for Y coordinate for tom to ray:

   YTR= YT+ ΔYTR+v11WHEREYT= Y coordinate of the station Tom = 4,653,039.613mΔYTR= Y component in baseline vector = 7,561.271mv11= residualYTR=1,176,398.558 11,899.15+v11          = 4,660,600.884+ v11

Writing observation equation for Z coordinate for tom to ray:

   ZTR= ZT+ ΔZTR+v12WHEREZT= Y coordinate of the station Tom = 4,187,198.360mΔZTR= Y component in baseline vector = 5,040.146mv12= residualZAT=4,187,198.3605,040.146+v12= 4,182,158.214+ v12

A = XBR000000YBR000000ZBR000000XTR000000YTR000000ZTRXBH000000YBH000000ZBH000000XTH000000YTH000000ZTH

A= 100000010000001000000100000010000001100000010000001000000100000010000001

Construct L matrix:

L = 1,164,499.3874,660,600.8794,182,158.2131,164,499.4004,660,600.8844,182,158.2141,168,947.8494,650,766.2554,191,851.2711,168,947.8414,650,766.2494,191,851.263

Conclusion:

A= 100000010000001000000100000010000001100000010000001000000100000010000001

L= 1,164,499.3874,660,600.8794,182,158.2131,164,499.4004,660,600.8844,182,158.2141,168,947.8494,650,766.2554,191,851.2711,168,947.8414,650,766.2494,191,851.263

Blurred answer
Students have asked these similar questions
A simply supported beam is subjected to the end couples (bending is about the strong axis) and the axial load shown in the figure below. These moments and axial load are from service loads and consist of equal parts dead load and live load. Lateral support is provided only at the ends. Neglect the weight of the beam and investigate this member as a beam-column. Use Fy that P40 k and M = 68 ft-k. For W10 × 33: I = 171 in.4; 10 ft and C₁ = 1.0: Mn = 134 ft-kips and Mn/₁ = 89.3 ft-kips; = 50 ksi. Suppose for Lb for Lc - = 10 ft: Pn 330 kips and Pr/c = 220 kips. W10 X 33 P M M 10' Pu A) + Ферп 9 a. Use LRFD. Select the interaction formula: Mur 84, Mnz Muy + <1.0 Фь Мпу Pu Mur Muy B) + + ≤ 1.0 20c Pn Фь Мих nx ФоМпу -Select- ✓ Compute the interaction formula. (Express your answer to three significant figures.) -Select- 1.0 This member is -Select- b. Use ASD. Select the interaction formula: Ра 8 Max May A) + + <1.0 Pn/c Mnx/b Mny/b Pa Max May B) + + 1.0 2Pn/c Mnx/b Mny/b -Select- Compute the…
Determine whether the given member satisfies the appropriate AISC interaction equation. Do not consider moment amplification. The loads are 50% dead load and 50% live load. Bending is about the x axis, and the steel is ASTM A992. Suppose that P = 280 k. For W12 x 106 with Fy = 50 ksi and Lc = 14 feet: Ферп 1130 kips, Pn/Sc = 755 kips, Mn = 597 ft-kips, Mn/₁ = 397 ft-kips. P 240 ft-k W12 X 106 14' K₁ = Ky = 1.0 240 ft-k a. Use LRFD. P Determine the factored axial compressive load and the factored bending moment. (Express your answers to three significant figures.) P₁ = Mu = kips ft-kips Select the interaction formula: P₁ A) + Мих Muy + ≤1.0 Ферп 9 Фь Мих of Mny Pu Мих Muy B) + 20c Pn Mnz + <1.0 Фь Мпу -Select- Compute the interaction formula. (Express your answer to three significant figures.) -Select- 1.0 This member -Select- b. Use ASD. the AISC Specification. Determine the total axial compressive load and the maximum bending moment. (Express your answers to three significant…
Refer to the following figure: K 6 m T 0.25 H 0.75 H 1 m A c,O,Y 3 m B 2 m 1 m C Figure Peck's (1969) apparent-pressure envelope for cuts in soft to medium clay Given: y = 17.5 kN/m³, c = 30 kN/m², 6 = 0, and center-to-center spacing of struts in the plan = 5 m. Determine the sheet-pile section modulus for the braced cut. Use all = 150 MN/m². (Enter your answer to three significant figures.) S = ×105 m³/m
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Structural Analysis
Civil Engineering
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:Cengage,
Text book image
Structural Analysis (10th Edition)
Civil Engineering
ISBN:9780134610672
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Fundamentals of Structural Analysis
Civil Engineering
ISBN:9780073398006
Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:McGraw-Hill Education
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781337551663
Author:DUNLAP, Richard A.
Publisher:Cengage,
Text book image
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning