![Elementary Surveying (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133758887/9780133758887_largeCoverImage.gif)
Concept explainers
Construct A and L matrices.
A=
L=
Given that
Baseline
Explanation:
Writing observation equation for X coordinate for bonnieto ray:
WHERE
XB= X coordinate of the station bonnie =
ΔXB-R= X component in baseline vector =
ʋ1= residual
Writing observation equation for Y coordinate for Bonnie to Ray:
Writing observation equation for Z coordinate for Bonnie to Ray:
Writing observation equation for X coordinate for tom to herb:
Writing observation equation for y coordinate for tom to herb:
Writing observation equation for Z coordinate for tom to herb
Writing observation equations for X coordinate for bonnie to herb:
Writing observation equation for Y coordinates for bonnie to herb:
YB-H= YB+ ΔYB-H+ʋ8WHERE
YB= Y coordinate of the station Tom = -4,655,872.977m
ΔYB-H= Y component in baseline vector = 5,106.722m
ʋ8= residual
XA-T=4,655,872.977+5,106.722+ʋ8 = -4,650,766.255+ ʋ8
Writing observation equation for Z coordinates for bonnie to herb:
Writing observation equation for X coordinate for tom to ray:
Writing observation equation for Y coordinate for tom to ray:
Writing observation equation for Z coordinate for tom to ray:
A =
A=
Construct L matrix:
L =
Conclusion:
A=
L=
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 16 Solutions
Elementary Surveying (14th Edition)
- 4-39. Draw the shear and moment diagrams for each of the three members of the frame. Assume the frame is pin connected at A, C, and D and there is a fixed joint at B. 4 m 50 kN 40 kN -1.5 m -2 m 1.5 B 15 kN/m 6 m Darrow_forwardAggregates from three sources having the properties shown in Table P5.41were blended at a ratio of 25:60:15 by weight. Determine the properties of theaggregate blend.arrow_forward7-7. Determine the equations of the elastic curve for the beam using the x and x, coordinates. Specify the beam's maximum deflection. El is constant. 22arrow_forward
- The cantilever beam shown below supports a uniform service (unfactored) dead load of 1.5 kip/ft plus its own self weight, plus two unknown concentrated service (unfactored) live loads, as shown. The concrete has f’c = 6,000 psi and the steel yield strength is 60 ksi. a. Determine the design moment capacity. b. Set up the applied bending moment capacity. c. Calculate maximum safe concentrated live load that the beam may carry.arrow_forwardThe circular slab of radius r supported by four columns, as shown in figure, is to be isotropically reinforced. Find the ultimate resisting moment (m) per linear meter required just to sustain a concentrated factored load of P kN applied at the center of the slab. Solve by using equilibrium m m Columnarrow_forwardBy using the yield line theory, determine the ultimate resisting moment per linear meter (m) for an isotropic reinforced concrete two-way simply supported polygon slab shown in figure under a uniform load (q). Solve by using equilibrium method m marrow_forward
- By using the yield line theory, determine the ultimate resisting moment per linear meter (m) for an isotropic reinforced concrete two-way simply supported polygon slab shown in figure under a concentrated factored load of P. Solve by Using equilibrium method m m 8/arrow_forwardH.W: Evaluate the integral 1. 30 √ · √(x²y – 2xy)dydx 0-2 3 1 3. (2x-4y)dydx 1-1 2π π 5. (sinx + cosy)dxdy π 0 0 1 ƒ ƒ (x + 2. +y+1)dxdy 4. -1-1 41 ][ 20 x²ydxdyarrow_forwardExample 5 By using the yield line theory, determine the moment (m) for an isotropic reinforced concrete two-way slab (supports on two S.S sides shown in figure under the load (P) (all dimensions are in mm). Solve by using equilibrium method Please solve by using equilibrium method m m 3000 2000 2000arrow_forward
- 2. During construction, gate AB is temporarily held in place by the horizontal strut CD. Determine the force in the strut CD, if the gate is 3.0-m wide. A 0 B D Density of water = 103 kg/m³ 2 m 3 marrow_forward5. A gate is used to hold water as shown. The gate is rectangular and is 8-ft wide. Neglect the weight of the gate. Determine at what depth the gate is just about to open. 5000 Ib 15 ft Hinge 60°arrow_forwardH.W2. Design Twin Opening of an Inverted Siphon (8 + 27 +6) m required to pass Canal Discharge of 3m³/ sec under road with 0.18m Head Loss. The Velocity in the Canal is 0.78m/sec and the depth of water in the canal is 1.4m, Safety Screen is provided from entry and exit. The Inverted Siphon 22.5 ° ELBOWS of each end. IF n = 0.013, Ke= 0.2, Ko = 0.3, Kscreen Kelbows 0.05. = 0.2 andarrow_forward
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning
![Text book image](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337630931/9781337630931_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134610672/9780134610672_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337705028/9781337705028_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780073398006/9780073398006_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337551663/9781337551663_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305156241/9781305156241_smallCoverImage.jpg)