
Interpretation:
The difference between a magnetic field vector and a magnetic dipole vector is to be stated.
Concept introduction:
The region around the magnet that exerts a magnetic force is known as a magnetic field. Magnetic fields are produced by moving charged particles. These are produced around currents, electric fields, and dipoles.

Answer to Problem 16.1E
Magnetic field vector is the field produced when an
Explanation of Solution
The quantities that are expressed in terms of both magnitude, as well as direction, are known as vector quantities. The magnetic force exerted around a magnet is known as a magnetic field. The charged particles that are in motion produce a magnetic field. Any point in a magnetic field can be described in terms of its magnitude as well as the direction of the field. A current carrying wire produces magnetic field lines in the form of circles which have the same center. These circular vectors are in the form of a cylinder that has its center at the wire. Then the right-hand thumb rule gives the relation between the direction of the electric current and the direction of the magnetic field lines. According to this rule, if the thumb points towards the direction of the electric current, the direction of the fingers that are wrapped around the wire shows the direction of the field lines. If an electric charge flows around a loop, then a magnetic effect is produced. This magnetic effect is known as a magnetic dipole. Any point in a magnetic dipole can be described in terms of its magnitude as well as its direction. It corresponds to a magnetic dipole vector. Since it consists of opposite magnetic poles, it is known as a dipole.
Magnetic field vector is the field produced when an electric current passes through a current carrying wire whereas a magnetic dipole vector is a magnetic force that is produced when an electric current passes through a loop that carries current.
Want to see more full solutions like this?
Chapter 16 Solutions
PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
- Complete the mechanismarrow_forwardV Biological Macromolecules Drawing the Haworth projection of an aldose from its Fischer projection Draw a Haworth projection of a common cyclic form of this monosaccharide: H C=O HO H HO H H OH CH₂OH Explanation Check Click and drag to start drawing a structure. Xarrow_forwardComplete the mechanismarrow_forward
- Complete the mechanismarrow_forward8 00 6 = 10 10 Decide whether each of the molecules in the table below is stable, in the exact form in which it is drawn, at pH = 11. If you decide at least one molecule is not stable, then redraw one of the unstable molecules in its stable form below the table. (If more than unstable, you can pick any of them to redraw.) Check OH stable HO stable Ounstable unstable O OH stable unstable OH 80 F6 F5 stable Ounstable X Save For Later Sub 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy C ཀྭ་ A F7 매 F8 F9 4 F10arrow_forwardJust try completing it and it should be straightforward according to the professor and TAs.arrow_forward
- The grading is not on correctness, so if you can just get to the correct answers without perfectionism that would be great. They care about the steps and reasoning and that you did something. I asked for an extension, but was denied the extension.arrow_forwardShow your work and do something that is reasonable. It does not have to be 100% correct. Just show something that looks good or pretty good as acceptable answers. Something that looks reasonable or correct would be sufficient. If you can get many of them correct that would be great!arrow_forwardShow your work and do something that is reasonable. It does not have to be 100% correct. Just show something that looks good or pretty good as acceptable answers. Something that looks reasonable or correct would be sufficient. If you can get many of them correct that would be great!arrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning
- Principles of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning


