
Concept explainers
(a)
Interpretation:
The binding of oxygen by Haemoglobin
Concept Information:
The equilibrium, the reactant are forming products at the same rate at which the products are being converted back to reactant, therefore concentration of species are constant.
Le Châtelier’s principle: When system is in equilibrium and stress is added to the system, the system will shift in order to alleviate itself of the stress in order to return to equilibrium.
A change/stress is then made to system at equilibrium.
- 1. Change in concentration, 2. Change in volume, 3. Change in pressure, 4. Change in temperature and 5. Add Catalyst.
(b)
Interpretation:
The haemoglobin is favoured in body tissues, where the cells release carbon dioxide produced by
Concept Information:
Chemical Equilibrium: When the forward rate of reaction equals the reverse rate and the concentration of all the species in the system are constant.
The equilibrium, the reactant are forming products at the same rate at which the products are being converted back to reactant, therefore concentration of species are constant.
Le Châtelier’s principle: When system is in equilibrium and stress is added to the system, the system will shift in order to alleviate itself of the stress in order to return to equilibrium.
A change/stress is then made to system at equilibrium.
- 1. Change in concentration, 2. Change in volume, 3. Change in pressure, 4. Change in temperature and 5. Add Catalyst.
(c)
Interpretation:
How does the equilibrium reaction, of haemoglobin with oxygen is affected by the hyperventilates, the concentration of
Concept Information:
Chemical Equilibrium: When the forward rate of reaction equals the reverse rate and the concentration of all the species in the system are constant.
The equilibrium, the reactant are forming products at the same rate at which the products are being converted back to reactant, therefore concentration of species are constant.
Le Châtelier’s principle: When system is in equilibrium and stress is added to the system, the system will shift in order to alleviate itself of the stress in order to return to equilibrium.
A change/stress is then made to system at equilibrium.
- 1. Change in concentration, 2. Change in volume, 3. Change in pressure, 4. Change in temperature and 5. Add Catalyst.

Want to see the full answer?
Check out a sample textbook solution
Chapter 16 Solutions
EBK GENERAL CHEMISTRY: THE ESSENTIAL CO
- Indicate the isomers of the A(H2O)6Cl3 complex. State the type of isomerism they exhibit and explain it briefly.arrow_forwardState the formula of the compound potassium μ-dihydroxydicobaltate (III) tetraoxalate.arrow_forwardConsider the reaction of the cyclopentanone derivative shown below. i) NaOCH2CH3 CH3CH2OH, 25°C ii) CH3!arrow_forward
- What constitutes a 'reference material', and why does its utilization play a critical role in the chemical analysis of food products? Provide examples.arrow_forwardExplain what calibration is and why it is essential in relation to food analysis. Provide examples.arrow_forwardThe cobalt mu-hydroxide complex cobaltate(III) of potassium is a dinuclear complex. Correct?arrow_forward
- The cobalt mi-hydroxide complex cobaltate(III) of potassium is a dinuclear complex. Correct?arrow_forward3. Arrange the different acids in Exercise B # 2 from the strongest (1) to the weakest acid (10). 1. 2. (strongest) 3. 4. 5. 6. 7. 8. 9. 10 10. (weakest)arrow_forwardName Section Score Date EXERCISE B pH, pOH, pка, AND PKD CALCULATIONS 1. Complete the following table. Solution [H+] [OH-] PH РОН Nature of Solution A 2 x 10-8 M B 1 x 10-7 M C D 12.3 6.8 2. The following table contains the names, formulas, ka or pka for some common acids. Fill in the blanks in the table. (17 Points) Acid Name Formula Dissociation reaction Ka pka Phosphoric acid H₂PO₁ H3PO4 H++ H₂PO 7.08 x 10-3 Dihydrogen H₂PO H₂PO H+ HPO 6.31 x 10-6 phosphate Hydrogen HPO₁ 12.4 phosphate Carbonic acid H2CO3 Hydrogen HCO 6.35 10.3 carbonate or bicarbonate Acetic acid CH,COOH 4.76 Lactic acid CH₂CHOH- COOH 1.38 x 10 Ammonium NH 5.63 x 10-10 Phenol CH₂OH 1 x 10-10 Protonated form CH3NH3* 3.16 x 10-11 of methylaminearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





