Biochemistry
6th Edition
ISBN: 9781305577206
Author: Reginald H. Garrett, Charles M. Grisham
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16, Problem 14P
Interpretation Introduction
To determine:
The minimum number of myosin heads needed to lift the weight and the number of sliding steps myosin must take
Introduction:
Potential energy can be calculated as follows:
Here,
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionKnowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biochemistry and related others by exploring similar questions and additional content below.Similar questions
- Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Exploring the Michaelis-Menten Equation - I According to the Michaelis-Menten equation, what is the v/Vmax ratio when [S] = 4 Km?arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Cells as Steady-State Systems Describe what is meant by the phrase "cells tire steady-state systems." (Section 1.4)arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Assessing the Cross-Overs of Flavodoxin For flavodoxin (pdb id = 5NLL), identify (he right-handed cross-overs and the left-handed cross-overs in the parallel -sheet.arrow_forward
- Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Quantitative Relationships Between Rate Constants to Calculate Km, Kinetic Efficiency (kcat/Km) and Vmax - V Acetylcholinesterase catalyzes the hydrolysis of the neurotransmitter acetylcholine: Acetylcholine+H2Oacetate+cholineThe Km of acetylcholinesterase for its substrate acetylcholine is 9 10-5 M. In a reaction mixture containing 5 nanomoles/mL of acetylcholinesterase and 130 M acetylcholine, a velocity v0=40mol/mLsecwas observed for the acetylcholinesterase reaction. a. Calculate Vmax for this amount of enzyme. b. Calculate kcat for acetylcholinesterase. c. Calculate the catalytic efficiency (kcat/Km) for acetylcholinesterase. d. Does acetylcholinesterase approach catalytic perfection?arrow_forwardAnswers to all problems are at (he end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Understanding State Functions Define a slate function. Name three thermodynamic quantities that are state functions and three thatarrow_forwardAnswers to all problems are at the end οΓthis book. Detailed solutions are available in the Student Solutions Manual. Study Guide, and Problems Book. Superbug infections are becoming more common around the world. Many of these infections arise from the action of -lactamases, of which there are several types with different mechanisms of action. Consult the end-of-chapter reference by von Nussbaum and Schiffer and write detailed mechanisms for the serine -lactamases and metallo- -lactamases.arrow_forward
- Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Assessing the Effect of Temperature on Equilibrium You are studying the various components of the venom of a poisonous lizard. One of the venom components is a protein that appears to be temperature sensitive. When heated, it denatures and is no longer toxic. The process can be described by the following simple equation: There is only enough protein from this venom to carry out two equilibrium measurements. At 298 K, you find that 98% of the protein is in its to.\ic form. However, when you raise the temperature to 320 �.. you find that only 10% of the protein is in its toxic form. Calculate the equilibrium constants for the T to N conversion at these two temperatures. Use the data to determine the H,S, and G for this process.arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Examine the ActiveModle for N-myristoylt ranjsferase and explain the mechanism of N-myristolation.arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Quantitative Relationships Between Rale Constants to Calculate Km, Kinetic Efficiency (kcat/Km) and Vmax - II Triose phosphate isomerase catalyzes the conversion of glyceraldehyde-3-phosphate to dihydroxy-acetone phosphate. Glyceraldehyde3PdihydroxyacetonePThe Km of this enzyme tor its substrate glyceraldehyde-3-phosphate is 1.8 10-5 M. When [glyceraldehydes-3-phosphate] = 30 M, the rate of the reaction, v, was 82.5 mol mL-1 sec-1. a. What is Vmax for this enzyme? b. Assuming 3 nanomoles per mL of enzyme was used in this experiment ([Etotal]) = 3 nanomol/mL), what is kcat for this enzyme? c. What is the catalytic efficiency (kcat/Km) for triose phosphate isomerase? d. Does the value of kcat/Km reveal whether triose phosphate isomerase approaches catalytic perfection? e. What determines the ultimate speed limit of an enzyme-catalyzed reaction? That is, what is it that imposes the physical limit on kinetic perfection?arrow_forward
- Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. An Estimation of Minimal Genome Size for a Living Cell Studies of existing cells to determine the minimum number of genes for a living cell have suggested that 206 genes are sufficient. If the ratio of protein-coding genes to non-protein-coding genes is the same in this minimal organism as the genes of Mycoplasma genitulium, how many proteins are represented in these 206 genes. How many base pairs would be required to form the genome of this minimal organism if the genes are the same size as M genilalium genes? (Section 1.5)arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Protein Kinase Specificity Via Consensus Target Sequences and Intrasteric Control Consult Table 15.2 and, a. Suggest a consensus amino acid sequence within, phosphorylase kinase that makes it a target of protein kinase A (the cAMP- dependent protein kinase). b. Suggest an effective amino acid sequence for a regulatory domain pseudosubstrate sequence that would exert intrasteric control on phosphorylase kinase by blocking its active site.arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Calculating Tms and Separating DNA Molecules That Differ in G:C Content At 0.2 M Na+, the melting temperature of double-stranded DNA is given by the formula, Tm = 69.3 + 0 41 (% G + C). The DNAs from mice and rats have (G + C) contents of 44% and 40%, respectively. Calculate the Tms for these DNAs in 0.2 M NaCl. If samples of these DNAs were inadvertently mixed, how might they be separated from one another?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- BiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage Learning
Biochemistry
Biochemistry
ISBN:9781305577206
Author:Reginald H. Garrett, Charles M. Grisham
Publisher:Cengage Learning
Chapter 7 - Human Movement Science; Author: Dr. Jeff Williams;https://www.youtube.com/watch?v=LlqElkn4PA4;License: Standard youtube license