Concept explainers
Why is the following situation impossible? An astronaut on the Moon is studying wave motion using the apparatus discussed in Example 16.3 and shown in Figure 16.12. He measures the time interval for pulses to travel along the horizontal wire. Assume the horizontal wire has a mass of 4.00 g and a length of 1.60 m and assume a 3.00-kg object is suspended from its extension around the pulley. The astronaut finds that a pulse requires 26.1 ms to traverse the length of the wire.
Trending nowThis is a popular solution!
Chapter 16 Solutions
PHYSICS FOR SCI.AND ENGR W/WEBASSIGN
Additional Science Textbook Solutions
University Physics with Modern Physics (14th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
University Physics (14th Edition)
Applied Physics (11th Edition)
Physics of Everyday Phenomena
- Review. A tuning fork vibrating at 512 Hz falls from rest and accelerates at 9.80 m/s2. How far below the point of release is the tuning fork when waves of frequency 485 Hz reach the release point?arrow_forwardA 100 g wire is held under a tension of 250 N with one end at x = 0 and the other at x = 10.0 m. At time t = 0, pulse 1 is sent along the wire from the end at x = 10.0 m. At time t = 30.0 ms, pulse 2 is sent along the wire from the end at x = 0.At what position x do the pulses begin to meet?arrow_forwardIn the arrangement shown in the figure, an object of mass m=5.9 hangs from a cord around a light pulley. The length of the cord between point P and the pulley is L=2.0 m. When the vibrator is set to a frequency of 150 Hz, a standing wave with six loops is formed. What must be the linear mass density of the cord?arrow_forward
- A bat emits a chirping sound of frequency 67.0 Hz while moth hunting. The chirp lasts for 1.0 ms and then is silent. The beginning of the echo returns just after the outgoing chirp is finished - how close to the moth is the bat? Assume a cool night with air temperature of 10oC.arrow_forwardAn astronaut on a small planet wishes to measure the local value of g by timing pulses traveling down a wire which has a large object suspended from it. Assume a wire of mass 4.30 g is 1.60 m long and has a 3.00-kg object suspended from it. A pulse requires 65.3 ms to traverse the length of the wire. Calculate golanet from this data. (You may neglect the mass of the wire when calculating the tension in it.) 9 planet m/s²arrow_forwardA standing wave experiment is performed to determine the speed of waves in a rope. The standing wave pattern shown in the rope. The rope makes 90.0 complete vibrational cycles in exactly one minute. The speed of the waves is ____ m/s.arrow_forward
- A ski gondola is connected to the top of a hill by a steel cable of length 720 m and diameter 1.3 cm. As the gondola comes to the end of its run, it bumps into the terminal and sends a wave pulse along the cable. It is observed that it took 14 s for the pulse to return. What is the speed of the pulse? What is the tension in the cable?arrow_forwardA person putting up power lines is told to stretch the wire between poles to a tension of about 800N. The person doesn't have a tension scale so they decide to measure the speed of a pulse created on the wire when they hit it with a wrench. The pulse travels from one pole 60m to another pole and back again in 2.6 s. The 60m long wire has a mass of 15kg. Should the wire be tightened or loosened? Explain how you decided. Thanks!arrow_forwardplease solve it as soon as possiblearrow_forward
- In the arrangement shown in the figure, an object of mass m=5.9 kg hangs from a cord around a light pulley. The length of the cord between point P and the pulley is L2.0 m. When the vibrator is set to a frequency of 150 Hz, a standing wave with six loops is formed. What must be the linear mass density of the cord?arrow_forwardAt high frequencies, the value of the propagation constant (y) is approximately :* Y = (R + j@ L ) ( G + j w C ) Y = a Option 4 Option 3 Y = a +jß Y = j ß Option 1 Option 2arrow_forwardHow do i solve this questionarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill