Chemistry & Chemical Reactivity, Hybrid Edition (with OWLv2 24-Months Printed Access Card)
Chemistry & Chemical Reactivity, Hybrid Edition (with OWLv2 24-Months Printed Access Card)
9th Edition
ISBN: 9781285462530
Author: John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher: Cengage Learning
bartleby

Videos

Textbook Question
Book Icon
Chapter 16, Problem 127SCQ

Consider a salt of a weak base and a weak acid such as ammonium cyanide. Both the NH4+ and CN ions interact with water in aqueous solution, but the net reaction can be considered as a proton transfer from NH4+ to CN.

NH4+(aq) + CN(aq) ⇌ NH3(aq) + HCN(aq)

  1. (a) Show that the equilibrium constant for this reaction, Kact, is
  2. 1. K net = K a K b K w

    where Ka is the ionization constant for the weak acid NH4+ and Kb, is the constant for the weak base CN.

  3. (b) Calculate Knet values fur each of the following, NH4CN, NH4CH3CO2, and NH4K Which salt has the largest value of Kact, and why?
  4. (c) Predict whether a solution of each of the compounds in (b) is acidic or basic. Explain how you made this prediction (Yon do not need a calculation to make this prediction.)

(a)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The equilibrium constant for the reaction has to be determined.

Concept Introduction:

Equilibrium constants:

The equilibrium constant is used to quantitative measurement of the strength of the acid and bases in the water.

Ka is an acid constant for equilibrium reactions.

HA + H2OH3O++ A-Ka[H3O+][A-][HA]

Kb is base constant for equilibrium reaction.

BOH + H2OB++ OH-Ka[B+][OH-][BOH]

The value of Knet is derived from three equations. The three equations represent acid ionization constant for a weak acid, base ionization constant for a weak base and autoionization of water.

Answer to Problem 127SCQ

The value of the equilibrium constant is derived to be,

Knet=KaKbKw

Explanation of Solution

For ammonium ion;

NH4+(aq)+H2O(l)NH3(aq)+H3O+(aq)                                                         (1)

From equation 1,

K1=Ka

For cyanide ion;

CN(aq)+H2O(l)HCN(aq)+OH(aq)                                                           (2)

From equation 2,

K2=Kb

For autoionization of water;

H3O+(aq)+HO(l)2H2O(l)                                                                              (3)

From equation 3,

K3=1/Kw

Add equation 1,2 and 3,

NH4+(aq)+CN(aq)NH3(aq)+HCN(aq)                                                       (4)

Therefore,

Knet=K1K2K3=KaKbKw

(b)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The Knet values has to be calculated for three salts and salt with the largest value of the equilibrium constant is to be identified.

Concept Introduction:

The value of Knet is derived from three equations. The three equations represent acid ionization constant for a weak acid, base ionization constant for a weak base and autoionization of water.

Value of Knet is calculated for the three salts (of a weak acid and weak base) by using the equation given below:

Knet=KaKbKw

From a comparison of values of the acid dissociation constant and base dissociation constant, nature of the solution is predicted.

If the value of acid dissociation constant is more than the value of base dissociation constant, then the products will have more acidic species and therefore the nature of solution will be acidic.

On the same concept, if the value of base dissociation constant is more than acid dissociation constant then the solution will be basic.

If the value of acid and base dissociation constant is equal then the solution becomes neutral.

Answer to Problem 127SCQ

The value of Knet for NH4CN is 1.4.

The value of Knet for NH4CH3CO2 is 3.1×105

The value of Knet for NH4F is 7.8×107

Explanation of Solution

For values of acid or base ionization constant refer to Table 16.2.

The value for Kw is 1014.

It is derived that;

Knet=KaKbKw

For NH4CN,

NH4+(aq)+CN(aq)NH3(aq)+HCN(aq)

Knet=(5.6×1010)(2.5×105)1×1014=1.4

For NH4CH3CO2,

NH4+(aq)+CH3COO(aq)NH3(aq)+CH3COOH(aq)

Knet=(5.6×1010)(5.6×1010)1014=3.1×105

For NH4F,

NH4+(aq)+F(aq)NH3(aq)+HF(aq)

Knet=(5.6×1010)(1.4×1011)1014=7.8×107

Value of Knet is largest for NH4CN among the three-given species.

It is inferred from the value of Knet that only cyanide ion can abstract a proton from ammonium ion strongly enough to give a significant amount of products

(c)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

Nature of solution of different salts is predicted according to their acid or base ionization constant.

Concept Introduction:

Equilibrium constants:

The equilibrium constant is used to quantitative measurement of the strength of the acid and bases in the water.

Ka is an acid constant for equilibrium reactions.

HA + H2OH3O++ A-Ka[H3O+][A-][HA]

Kb is a base constant for equilibrium reaction.

BOH + H2OB++ OH-Ka[B+][OH-][BOH]

Ion product constant for water

  Kw= [H3O+][OH-]       =1.00×10-14 pH = -log[H3O+]pOH= -log[OH-]

Relation between pH and pOH

 pH + pOH =14

The value of Knet is derived from three equations. The three equations represent acid ionization constant for a weak acid, base ionization constant for a weak base and autoionization of water.

Value of Knet is calculated for the three salts (of a weak acid and weak base) by using the equation given below:

Knet=KaKbKw

From a comparison of values of the acid dissociation constant and base dissociation constant, nature of the solution is predicted.

If the value of acid dissociation constant is more than the value of base dissociation constant, then the products will have more acidic species and therefore the nature of solution will be acidic.

On the same concept, if the value of base dissociation constant is more than acid dissociation constant then the solution will be basic.

If the value of acid and base dissociation constant is equal then the solution becomes neutral.

Answer to Problem 127SCQ

NH4CN is a basic solution.

NH4CH3CO2 is the neutral solution.

NH4F is an acidic solution.

Explanation of Solution

If the value of acid dissociation constant is more than the value of base dissociation constant, then the products will have more acidic species and therefore the nature of solution will be acidic.

On the same concept, if the value of base dissociation constant is more than acid dissociation constant then the solution will be basic.

If the value of acid and base dissociation constant is equal then the solution becomes neutral.

NH4CN is basic in nature because

Kb(CN)>Ka(NH4+)(2.5×105)>(5.6×1010)

NH4CH3CO2 is a neutral solution.

Kb(CH3COO)=Ka(NH4+)(5.6×1010)=(5.6×1010)

NH4F is an acidic solution

Kb(F)<Ka(NH4+)(1.4×1011)<(5.6×1010)

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Modify the given carbon skeleton to draw the major product of the following reaction. If a racemic mixture of enantiomers is expected, draw both enantiomers. Note: you can select a structure and use Copy and Paste to save drawing time. HBr کی CH3 کی Edit Drawing
Sort the following into the classification for a reaction that is NOT at equilibrium versus a reaction system that has reached equilibrium. Drag the appropriate items to their respective bins. View Available Hint(s) The forward and reverse reactions proceed at the same rate. Chemical equilibrium is a dynamic state. The ratio of products to reactants is not stable. Reset Help The state of chemical equilibrium will remain the same unless reactants or products escape or are introduced into the system. This will disturb the equilibrium. The concentration of products is increasing, and the concentration of reactants is decreasing. The ratio of products to reactants does not change. The rate at which products form from reactants is equal to the rate at which reactants form from products. The concentrations of reactants and products are stable and cease to change. The reaction has reached equilibrium. The rate of the forward reaction is greater than the rate of the reverse reaction. The…
Place the following characteristics into the box for the correct ion. Note that some of the characteristics will not be placed in either bin. Use your periodic table for assistance. Link to Periodic Table Drag the characteristics to their respective bins. ▸ View Available Hint(s) This anion could form a neutral compound by forming an ionic bond with one Ca²+. Reset Help This ion forms ionic bonds with nonmetals. This ion has a 1- charge. This is a polyatomic ion. The neutral atom from which this ion is formed is a metal. The atom from which this ion is formed gains an electron to become an ion. The atom from which this ion is formed loses an electron to become an ion. This ion has a total of 18 electrons. This ion has a total of 36 electrons. This ion has covalent bonds and a net 2- charge. This ion has a 1+ charge. Potassium ion Bromide ion Sulfate ion

Chapter 16 Solutions

Chemistry & Chemical Reactivity, Hybrid Edition (with OWLv2 24-Months Printed Access Card)

Ch. 16.3 - Prob. 3RCCh. 16.3 - Prob. 4RCCh. 16.3 - Prob. 5RCCh. 16.4 - For each of the following salts in water, predict...Ch. 16.4 - Prob. 1RCCh. 16.4 - Prob. 2RCCh. 16.5 - (a) Which is the stronger Bronsted acid, HCO3 or...Ch. 16.5 - Prob. 1RCCh. 16.5 - 2. In the following reaction, does the equilibrium...Ch. 16.6 - Equal amounts (moles) of HCl(aq) and NaCN(aq) are...Ch. 16.6 - 2. Equal amounts (moles) of acetic acid(aq) and...Ch. 16.6 - Prob. 3RCCh. 16.7 - A solution prepared from 0.055 mol of butanoic...Ch. 16.7 - What are the equilibrium concentrations of acetic...Ch. 16.7 - What are the equilibrium concentrations of HF, F...Ch. 16.7 - The weak base, CIO (hypochlorite ion), is used in...Ch. 16.7 - Calculate the pH after mixing 15 mL of 0.12 M...Ch. 16.7 - 1. What is [H3O+] in a 0.10 M solution of HCN at...Ch. 16.7 - 2. A 0.040 M solution of an acid, HA, has a pH of...Ch. 16.7 - What are the pH and ion concentrations in a...Ch. 16.7 - Prob. 4RCCh. 16.7 - Prob. 1QCh. 16.7 - Prob. 2QCh. 16.7 - The pKa, of the conjugate acid of atropine is...Ch. 16.8 - What is the pH of a 0.10 M solution of oxalic...Ch. 16.8 - Hydrazine (N2H4) is like CO32 in that it is a...Ch. 16.9 - Which of the following is the stronger acid? (a)...Ch. 16.9 - Prob. 2RCCh. 16.9 - Prob. 3RCCh. 16.10 - 1. Which of the following can act as a Lewis acid?...Ch. 16.10 - 2. The molecule whose structure is illustrated...Ch. 16.10 - Convert the pK values to K values for the...Ch. 16.10 - Other solvents also undergo autoionization. (a)...Ch. 16.10 - Prob. 3QCh. 16.10 - Prob. 4QCh. 16.10 - To measure the relative strengths of bases...Ch. 16 - Write the formula and the give the name of the...Ch. 16 - Write the formula and give the name of the...Ch. 16 - What are the products of each of the following...Ch. 16 - What are the products of each of the following...Ch. 16 - Write balanced equations showing how the hydrogen...Ch. 16 - Write a balanced equation showing how the HPO42...Ch. 16 - In each of the following acid-base reactions,...Ch. 16 - In each of the following acid-base reactions,...Ch. 16 - An aqueous solution has a pH of 3.75. What is the...Ch. 16 - A saturated solution of milk of magnesia. Mg(OH)2,...Ch. 16 - What is the pH of a 0.0075 M solution of HCl? What...Ch. 16 - What is the pH of a 1.2 104 M solution of KOH?...Ch. 16 - What is the pH of a 0.0015 M solution of Ba(OH)2?Ch. 16 - The pH of a solution of Ba(OH)2 is 10.66 at 25 ....Ch. 16 - Several acids are listed here with their...Ch. 16 - Several acids are listed here with their...Ch. 16 - Which of the following ions or compounds has the...Ch. 16 - Which of the following compounds or ions has the...Ch. 16 - Which of the following compounds or ions has the...Ch. 16 - Which of the following compounds or ion has the...Ch. 16 - Dissolving K2CO3 in water gives a basic solution....Ch. 16 - Dissolving ammonium bromide in water gives an...Ch. 16 - If each of the salts listed here were dissolved in...Ch. 16 - Which of the following common food additives gives...Ch. 16 - Prob. 25PSCh. 16 - Prob. 26PSCh. 16 - Prob. 27PSCh. 16 - An organic acid has pKa = 8.95. What is its Ka...Ch. 16 - Prob. 29PSCh. 16 - Which is the stronger of the following two acids?...Ch. 16 - Chloroacetic acid (ClCH2CO2H) has Ka = 1.41 103....Ch. 16 - A weak base has Kb = 1.5 109. What is the value...Ch. 16 - The trimethylammonium ion, (CH3)3NH+, is the...Ch. 16 - The chromium(III) ion in water, [Cr(H2O)6]3+. Is a...Ch. 16 - Acetic acid and sodium hydrogen carbonate, NaHCO3,...Ch. 16 - Ammonium chloride and sodium dihydrogen phosphate,...Ch. 16 - For each of the following reactions, predict...Ch. 16 - For each of the following reactions, predict...Ch. 16 - Equal molar quantities of sodium hydroxide and...Ch. 16 - Equal molar quantities of hydrochloric acid and...Ch. 16 - Equal molar quantities of acetic acid and sodium...Ch. 16 - Equal molar quantities of ammonia and sodium...Ch. 16 - A 0.015 M solution of hydrogen cyanate, HOCN, has...Ch. 16 - A 0.10 M solution of chloroacetic acid, CICH2CO2H,...Ch. 16 - A 0.025 M solution of hydroxyl amine has a pH of...Ch. 16 - Methylamine, CH3NH2, is a weak base. CH3NH2(aq) +...Ch. 16 - A 2.5 103 M solution of an unknown acid has a pH...Ch. 16 - A 0.015M solution of a base has a pH of 10.09 a)...Ch. 16 - What are the equilibrium concentrations of...Ch. 16 - The ionizations constant of a very weak acid, HA...Ch. 16 - What are the equilibrium concentration of H3O+, CN...Ch. 16 - Phenol (C6H5OH) commonly called carbolic acid is a...Ch. 16 - What are the equilibrium concentrations of...Ch. 16 - A hypothetical weak base has Kb=5.0104.Calculate...Ch. 16 - The weak base methylamine, CH3NH2, has Kb=4.2104....Ch. 16 - Calculate the pH of a 0.12 M aqueous solution of...Ch. 16 - Calculate the pH of a 0.0010 M aqueous solution of...Ch. 16 - A solution of hydrofluoric acid, HF, has a pH of...Ch. 16 - Calculate the hydronium ion concentration and pH...Ch. 16 - Calculate the hydronium ion concentration and pH...Ch. 16 - Sodium cyanide is the salt of the weak acid HCN....Ch. 16 - The sodium salt of propionic acid, NaCH3CH2CO2 is...Ch. 16 - Calculate the hydronium ion concentration and pH...Ch. 16 - Calculate the hydronium ion concentration and the...Ch. 16 - For each of the following cases, decide whether...Ch. 16 - For each of the following cases, decide whether...Ch. 16 - Oxalic acid, H2C2O4, is a diprotic acid. Write a...Ch. 16 - Sodium carbonate is a diprotic base. Write a...Ch. 16 - Prove that Ka1 Kb2 = Kw for oxalic acid H2C2O4,...Ch. 16 - Prove that Ka3 Kb1 = Kw for phosphoric acid,...Ch. 16 - Sulphurous acid, H2SO3, is a weak acid capable of...Ch. 16 - Ascorbic acid (vitamin C, C6H8O6) is a diprotic...Ch. 16 - Hydrazine, N2H4, can interact with water in two...Ch. 16 - Ethylene diamine, H2NCH2CH2NH2, can interact with...Ch. 16 - Which should be stronger acid, HOCN or HCN?...Ch. 16 - Prob. 76PSCh. 16 - Explain why benzene sulfonic acid is a Brnsted...Ch. 16 - The structure of ethylene diamine is illustrated...Ch. 16 - Decide whether each of the following substances...Ch. 16 - Decide whether each of the following substances...Ch. 16 - Carbon monoxide forms complexes with low-valent...Ch. 16 - Trimethylamine, (CH3)3N, is a common reagent. It...Ch. 16 - About this time, you may be wishing you had an...Ch. 16 - Consider the following ions: NH4+, CO32, Br, S2,...Ch. 16 - A 2.50 g sample of a solid that could be Ba(OH)2...Ch. 16 - In a particular solution, acetic acid is 11%...Ch. 16 - Hydrogen, H2S, and sodium acetate, NaCH3CO2 are...Ch. 16 - For each of the following reactions predict...Ch. 16 - A monoprotic acid HX has Ka = 1.3 103. Calculate...Ch. 16 - Arrange the following 0.10M solutions in order of...Ch. 16 - m-Nitrophenol, a weak acid, can be used as a pH...Ch. 16 - The butylammonium ion, C4H9NH3+, has a Ka of 2.3 ...Ch. 16 - The local anaesthetic novocaine is the hydrogen...Ch. 16 - Pyridine is weak organic base and readily forms a...Ch. 16 - The base ethylamine (CH3CH2NH2) has a Kb of. A...Ch. 16 - Chloroacetic acid, ClCH2CO2H, is a moderately weak...Ch. 16 - Saccharin (HC7H4NO3S) is a weak acid with pKa =...Ch. 16 - Given the following solutions: (a) 0.1 M NH3 (b)...Ch. 16 - For each of the following salts, predict whether a...Ch. 16 - Nicotine, C10H14N2, has two basic nitrogen atoms...Ch. 16 - Prob. 101GQCh. 16 - The equilibrium constant for the reaction of...Ch. 16 - The equilibrium constant for the reaction of...Ch. 16 - Calculate the pH of the solution that results from...Ch. 16 - To what volume should 1.00 102 mL of any weak...Ch. 16 - The hydrogen phthalate ion, C8HsO4, is a weak acid...Ch. 16 - Prob. 107GQCh. 16 - Prob. 108GQCh. 16 - Prob. 109ILCh. 16 - Prob. 110ILCh. 16 - Prob. 111ILCh. 16 - A hydrogen atom in the organic base pyridine,...Ch. 16 - Nicotinic acid, C6H5NO2, is found in minute...Ch. 16 - Prob. 114ILCh. 16 - Sulfanilic acid, which is used in making dyes, is...Ch. 16 - Amino acids are an important group of compounds....Ch. 16 - How can water be both a Brnsied base and a Lewis...Ch. 16 - The nickel(II) ion exists as [Ni(H2O)4]2+ in...Ch. 16 - The halogens form three stable, weak acids, HOX....Ch. 16 - The acidity of the oxoacids was described in...Ch. 16 - Perchloric acid behaves as an acid, even when it...Ch. 16 - You purchase a bottle of water. On checking its...Ch. 16 - Prob. 123SCQCh. 16 - Prob. 124SCQCh. 16 - Prob. 125SCQCh. 16 - Consider a salt of a weak base and a weak acid...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY