The solubility of CuBr ( s ) at equilibrium to be calculated. Concept introduction: The constant K sp is known as solubility product or solubility product constant. It is equilibrium constant and for a given solid, it has a particular value at a given temperature. However, the solubility is equilibrium position. The solubility product expression comprises of product of the ion concentrations.
The solubility of CuBr ( s ) at equilibrium to be calculated. Concept introduction: The constant K sp is known as solubility product or solubility product constant. It is equilibrium constant and for a given solid, it has a particular value at a given temperature. However, the solubility is equilibrium position. The solubility product expression comprises of product of the ion concentrations.
Interpretation: The solubility of
CuBr(s) at equilibrium to be calculated.
Concept introduction: The constant
Ksp is known as solubility product or solubility product constant. It is equilibrium constant and for a given solid, it has a particular value at a given temperature. However, the solubility is equilibrium position. The solubility product expression comprises of product of the ion concentrations.
(b)
Interpretation Introduction
Interpretation: The concentration of
Br− at equilibrium to be calculated.
Concept introduction: The constant
Ksp is known as solubility product or solubility product constant. It is equilibrium constant and for a given solid, it has a particular value at a given temperature. However, the solubility is equilibrium position. The solubility product expression comprises of product of the ion concentrations.
(c)
Interpretation Introduction
Interpretation: The concentration of
CN− at equilibrium to be calculated.
Concept introduction: The constant
Ksp is known as solubility product or solubility product constant. It is equilibrium constant and for a given solid, it has a particular value at a given temperature. However, the solubility is equilibrium position. The solubility product expression comprises of product of the ion concentrations.
Relative Intensity
Part VI. consider the multi-step reaction below for compounds
A, B, and C.
These compounds were subjected to mass spectrometric analysis and
the following spectra for A, B, and C was obtained.
Draw the structure of B and C and match all three compounds
to the correct spectra.
Relative Intensity
Relative Intensity
100
HS-NJ-0547
80
60
31
20
S1
84
M+
absent
10
30
40
50
60
70
80
90
100
100-
MS2016-05353CM
80-
60
40
20
135 137
S2
164 166
0-m
25
50
75
100
125
150
m/z
60
100
MS-NJ-09-43
40
20
20
80
45
S3
25
50
75
100
125
150
175
m/z
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell