Engineering Mechanics: Statics & Dynamics (14th Edition)
14th Edition
ISBN: 9780133915426
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 15.9, Problem 138P
To determine
The acceleration of the second stage just after the engine is fired and also the acceleration just before all the fuel is consumed.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Each of the two stages A and B of the rocket has a mass of 2 M-g (M=mega) when their fuel tanks are empty. They each carry 300 kg of fuel and are capable of consuming it at a rate of 50 kg/s and eject it with a constant velocity of 2500 m/s, measured with respect to the rocket. The rocket is launched vertically from rest by first igniting stage B. Then stage A is ignited immediately after all the fuel in B is consumed and A has separated from B Neglect drag resistance and the variation of the rocket’s weight with altitude.
Given:
Ma = Mb = 2000 Kg
M Fuel = 300 Kg
Fuel Consumption = 50 Kg/s
V0 Ejected Fuel = 2500 m/s
V0 rocket = 0 m/s
The weight of a Falcon rocket is 500,000 kg. It will be landed on earth at a constant
speed of 100 m/s. To slow down the rocket, combustion gases will be fired at the
bottom and leave the rocket at a constant rate of 150 kg/s at a relative velocity of 5000
m/s in the direction of motion of the spacecraft for a period of 10 s. If the mass change
of the Falcon rocket cannot be ignored, determine
(a) the deceleration of the rocket during this period,
(b) the thrust exerted on the rocket.
Water issues from a nozzle with an initial velocity v and supports a thin plate of mass m at a
height h above the nozzle exit. A hole in the center of the plate allows some of the water to travel
upward to a maximum altitude 2h above the plate. Determine the mass m of the plate. Neglect
any effects of water falling onto the plate after reaching maximum altitude. Let p be the density
of water.
2h
-d
-D
m
Chapter 15 Solutions
Engineering Mechanics: Statics & Dynamics (14th Edition)
Ch. 15.2 - Determine the impulse of the force for t = 2 s.Ch. 15.2 - The 0.5kg ball strikes the rough ground and...Ch. 15.2 - Prob. 2FPCh. 15.2 - Prob. 3FPCh. 15.2 - The wheels of the 1.5-Mg car generate the traction...Ch. 15.2 - Prob. 5FPCh. 15.2 - A man kicks the 150-g ball such that it leaves the...Ch. 15.2 - If the coefficient of kinetic friction between the...Ch. 15.2 - Prob. 3PCh. 15.2 - Each of the cables can sustain a maximum tension...
Ch. 15.2 - A hockey puck is traveling to the left with a...Ch. 15.2 - A train consists of a 50-Mg engine and three cars,...Ch. 15.2 - Crates A and B weigh 100 lb and 50 lb,...Ch. 15.2 - Prob. 8PCh. 15.2 - Prob. 9PCh. 15.2 - The 50-kg crate is pulled by the constant force P....Ch. 15.2 - During operation the jack hammer strikes the...Ch. 15.2 - For a short period of time, the frictional driving...Ch. 15.2 - The 2.5-Mg van is traveling with a speed of 100...Ch. 15.2 - Prob. 14PCh. 15.2 - Prob. 15PCh. 15.2 - The choice of a seating material for moving...Ch. 15.2 - The towing force acting on the 400-kg safe varies...Ch. 15.2 - Prob. 18PCh. 15.2 - Prob. 19PCh. 15.2 - Prob. 20PCh. 15.2 - If it takes 35 s for the 50-Mg tugboat to increase...Ch. 15.2 - Prob. 22PCh. 15.2 - Prob. 23PCh. 15.2 - The motor pulls on the cable at A with a force F =...Ch. 15.2 - The balloon has a total mass of 400 kg including...Ch. 15.2 - Prob. 26PCh. 15.2 - Prob. 27PCh. 15.2 - Prob. 28PCh. 15.2 - Prob. 29PCh. 15.2 - Prob. 30PCh. 15.2 - Prob. 31PCh. 15.2 - Prob. 32PCh. 15.2 - The log has a mass of 500 kg and rests on the...Ch. 15.2 - Prob. 34PCh. 15.2 - Prob. 7FPCh. 15.2 - The cart and package have a mass of 20 kg and 5...Ch. 15.3 - The 5-kg block A has an initial speed of 5 m/s as...Ch. 15.3 - Prob. 10FPCh. 15.3 - Prob. 11FPCh. 15.3 - The cannon and support without a projectile have a...Ch. 15.3 - The 5-Mg bus B is traveling to the right at 20...Ch. 15.3 - Prob. 36PCh. 15.3 - A railroad car having a mass of 15 Mg is coasting...Ch. 15.3 - A ballistic pendulum consists of a 4-kg wooden...Ch. 15.3 - Prob. 40PCh. 15.3 - A 0.03-lb bullet traveling at 1300 ft/s strikes...Ch. 15.3 - A 0.03-lb bullet traveling at 1300 ft/s strikes...Ch. 15.3 - Prob. 43PCh. 15.3 - Prob. 44PCh. 15.3 - Prob. 45PCh. 15.3 - The two blocks A and B each have a mass of 5 kg...Ch. 15.3 - The 30-Mg freight car A and 15-Mg freight car B...Ch. 15.3 - Blocks A and B have masses of 40 kg and 60 kg,...Ch. 15.3 - Prob. 49PCh. 15.3 - Prob. 50PCh. 15.3 - Prob. 51PCh. 15.3 - The free-rolling ramp has a mass of 40 kg. A 10-kg...Ch. 15.3 - Block A has a mass of 5 kg and is placed on the...Ch. 15.3 - Solve Prob. 15-53 if the coefficient of kinetic...Ch. 15.3 - Prob. 55PCh. 15.3 - Prob. 56PCh. 15.3 - The 10-kg block is held at rest on the smooth...Ch. 15.3 - Prob. 13FPCh. 15.3 - Prob. 14FPCh. 15.4 - The 30-lb package A has a speed of 5 ft/s when it...Ch. 15.4 - The ball strikes the smooth wall with a velocity...Ch. 15.4 - Prob. 17FPCh. 15.4 - Prob. 18FPCh. 15.4 - Prob. 58PCh. 15.4 - Prob. 59PCh. 15.4 - Disk A has a mass of 2 kg and is sliding forward...Ch. 15.4 - Prob. 61PCh. 15.4 - Prob. 62PCh. 15.4 - Prob. 63PCh. 15.4 - Prob. 64PCh. 15.4 - A 1-lb ball A is traveling horizontally at 20 ft/s...Ch. 15.4 - Block A, having a mass m, is released from rest,...Ch. 15.4 - Prob. 67PCh. 15.4 - Prob. 68PCh. 15.4 - Prob. 69PCh. 15.4 - Prob. 70PCh. 15.4 - Prob. 71PCh. 15.4 - The tennis ball is struck with a horizontal...Ch. 15.4 - Prob. 73PCh. 15.4 - Two smooth disks A and B each have a mass of 0.5...Ch. 15.4 - Prob. 75PCh. 15.4 - Prob. 76PCh. 15.4 - The cue ball A is given an initial velocity (vA)1...Ch. 15.4 - Prob. 78PCh. 15.4 - Prob. 79PCh. 15.4 - A ball of negligible size and mass m is given a...Ch. 15.4 - Prob. 81PCh. 15.4 - The 20-lb box slides on the surface for which k =...Ch. 15.4 - Prob. 83PCh. 15.4 - Prob. 84PCh. 15.4 - Prob. 85PCh. 15.4 - Prob. 86PCh. 15.4 - Prob. 87PCh. 15.4 - Prob. 88PCh. 15.4 - Prob. 89PCh. 15.4 - Prob. 90PCh. 15.4 - The 200-g billiard ball is moving with a speed of...Ch. 15.4 - Prob. 92PCh. 15.4 - Disks A and B have a mass of 15 kg and 10 kg,...Ch. 15.4 - Prob. 19FPCh. 15.4 - Prob. 20FPCh. 15.7 - Initially the 5-kg block is moving with a constant...Ch. 15.7 - Prob. 22FPCh. 15.7 - Prob. 23FPCh. 15.7 - Prob. 24FPCh. 15.7 - Determine the angular momentum HO of the 6-lb...Ch. 15.7 - Determine the angular momentum HP of the 6-lb...Ch. 15.7 - Prob. 96PCh. 15.7 - Determine the angular momentum Hp, of each of the...Ch. 15.7 - Prob. 98PCh. 15.7 - Determine the angular momentum Hp of the 3-kg...Ch. 15.7 - Each ball has a negligible size and a mass of 10...Ch. 15.7 - The 800-lb roller-coaster car starts from rest on...Ch. 15.7 - The 800-lb roller-coaster car starts from rest on...Ch. 15.7 - A 4-lb ball B is traveling around in a circle of...Ch. 15.7 - A 4-lb ball B is traveling around in a circle of...Ch. 15.7 - The two blocks A and B each have a mass of 400 g....Ch. 15.7 - A small particle having a mass m is placed inside...Ch. 15.7 - If the rod of negligible mass is subjected to a...Ch. 15.7 - When the 2-kg bob is given a horizontal speed of...Ch. 15.7 - The elastic cord has an unstretched length l0 =...Ch. 15.7 - The amusement park ride consists of a 200-kg car...Ch. 15.7 - Prob. 111PCh. 15.7 - Prob. 112PCh. 15.7 - An earth satellite of mass 700 kg is launched into...Ch. 15.7 - Prob. 114PCh. 15.9 - Prob. 115PCh. 15.9 - Prob. 116PCh. 15.9 - Prob. 117PCh. 15.9 - Prob. 118PCh. 15.9 - Prob. 119PCh. 15.9 - The gauge pressure of water at A is 150.5 kPa....Ch. 15.9 - Prob. 121PCh. 15.9 - The fountain shoots water in the direction shown....Ch. 15.9 - A plow located on the front of a locomotive scoops...Ch. 15.9 - Prob. 124PCh. 15.9 - Water is discharged from a nozzle with a velocity...Ch. 15.9 - Prob. 126PCh. 15.9 - Prob. 127PCh. 15.9 - Prob. 128PCh. 15.9 - The water flow enters below the hydrant at C at...Ch. 15.9 - Sand drops onto the 2-Mg empty rail car at 50 kg/s...Ch. 15.9 - Prob. 131PCh. 15.9 - Prob. 132PCh. 15.9 - Prob. 133PCh. 15.9 - A rocket has an empty weight of 500 lb and carries...Ch. 15.9 - Prob. 135PCh. 15.9 - The rocket car has a mass of 2 Mg (empty) and...Ch. 15.9 - Prob. 137PCh. 15.9 - Prob. 138PCh. 15.9 - The missile weighs 40 000 lb. The constant thrust...Ch. 15.9 - Prob. 140PCh. 15.9 - Prob. 141PCh. 15.9 - The 12-Mg jet airplane has a constant speed of 950...Ch. 15.9 - Prob. 143PCh. 15.9 - Prob. 144PCh. 15.9 - Prob. 145PCh. 15.9 - Prob. 146PCh. 15.9 - Prob. 147PCh. 15.9 - Prob. 148PCh. 15.9 - Prob. 149PCh. 15.9 - Prob. 1CPCh. 15.9 - Prob. 2CPCh. 15.9 - Prob. 1RPCh. 15.9 - Prob. 2RPCh. 15.9 - Prob. 3RPCh. 15.9 - Prob. 4RPCh. 15.9 - The 200-g projectile is fired with a velocity of...Ch. 15.9 - Block A has a mass of 3 kg and is sliding on a...Ch. 15.9 - Two smooth billiard balls A and B have an equal...Ch. 15.9 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The 12-Mg "jump jet" is capable of taking off vertically from the deck of a ship. If its jets exert a constant vertical force of 150 kN on the plane, determine its velocity and how high it goes in t = 6 s, starting from rest. Neglect the loss of fuel during the liftarrow_forwardA block with a weight of 5 kg hanging from the ceiling attached to a spring is raised and then pulled downward. As it passes downward through the spring's unstretched position it has a speed of 10 m/s downward. If the spring has a stiffness of 5 N/m, determine the maximum position below the spring's unstretched position achieved by the block.arrow_forwardThe rocket shown is designed to test the operation of a new guidance system. When it has reached a certain altitude beyond the effective influence of the earth's atmosphere, its mass has decreased to 2.49 Mg, and its trajectory is 0= 34° from the vertical. Rocket fuel is being consumed at the rate of 130 kg/s with an exhaust velocity of 625 m/s relative to the nozzle. Gravitational acceleration is 9.54 m/s² at its altitude. Calculate the n- and t-components of the acceleration of the rocket. Answers: an= Vert. 18 at = M 1 Da - Horiz- m/s² m/s²arrow_forward
- A vertical take-off and landing aircraft has a mass of 9000 kg. A constant upward thrust of 100 kN is applied to it. Determine the vertical distance it will travel when it reaches the velocity of 10 m/s. Clearly write down here what principle or law you use in this problem. Draw FBD of the aircraft here.arrow_forwardA toy car is propelled by water that squirts from an internal tank at a constant 6 ft/s relative to the car. The weight of the empty car is 0.4 lb and it holds 2 lb of water. Neglecting other tangential forces, determine the top speed of the car.arrow_forwardDetermine the linear momentum of a person whose mass is 80 kg and who is running at a rate of 3 m/s. Compare it to the momentum of a car that has a mass of 2000 kg and is moving at a rate of 30 m/s in the same direction as the person.arrow_forward
- A car climbs through a slope of 30° in 5 seconds. If it starts at rest and after 10 m its velocity is 80 km/h. What is the power that the car has to develop? What is the force that produces this power and makes it possible for the car to climb and accelerate? Assume the car does not suffer any temperature change and that its mass is m = 450 kg. d = 10 m 0 - 30°arrow_forwardThe missile weighs 47000 lb. The constant thrust provided by the turbojet engine isT = 18000 lb. Additional thrust is provided by two rocket boosters B. The propellant ineach booster is burned at a constant rate of 175 lb/s, with a relative exhaust velocity of 2000f t/s. If the mass of the propellant lost by the turbojet engine can be neglected, determinethe velocity of the missile after the 6 s burn time of the boosters. The initial velocity ofthe missile is 150 mi/h. Using your integration procedure from the previous labs solve thisproblem with n = 5, n = 10 and n = 100.arrow_forward5. The 12-Mg "jump jet" is capable of taking off vertically from the deck of a ship. If its jets exert a constant vertical force of 150 kN on the plane, determine its velocity and how high it goes in t= 6s, starting from rest. Neglect the loss of fuel during the lift. 150 kNarrow_forward
- A baseball (m = 0.18 kg) has an initial velocity of v=-35 m/s as it approaches a bat. We have chosen the direction of approach as the negative direction. The bat applies an average force F that is much larger than the weight of the ball, and the ball departs from the bat with a final velocity of v=58 m/s. Determine the impulse applied to the ball by the bat.arrow_forwardA stone was dropped freely from a balloon at a height of 190 m. above the ground. The balloon is moving upward at a speed of 30 m/s. Determine the velocity of the stone as it hits the ground.arrow_forward30 mg = 1600 kg ma = 1200 kg VA1 = 50 km/h V81 = ? The two cars, A, and B, collided at right angles at the intersection. During the collision, the cars became entangled (AB) and moved off together to bump into a huge old tree. Calculate the velocity (km/h) of car B just before the collision with car A at the intersection. Right after bumping with the tree, determine the new velocity of the "entangled" cars. Also, compute the percent energy lost from the cars after the two collisions occurred. Neglect the geometry of the cars before and after the collision. Coefficient of restitution between the entangled cars (AB) and the tree (C), e43c = 0.18arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Extent of Reaction; Author: LearnChemE;https://www.youtube.com/watch?v=__stMf3OLP4;License: Standard Youtube License