
Engineering Mechanics: Statics & Dynamics (14th Edition)
14th Edition
ISBN: 9780133915426
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15.9, Problem 115P
To determine
The force components at the pin
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
1 Revolute four-bar mechanism, AB=60mm, BC=130mm, CD=140mm, AD=200mm,
CORRECT AND DETAILED HANDWRITTEN SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED.
The roof truss shown carries roof loads, where P = 10 kN. The truss is consisting of circular arcs top andbottom chords with radii R + h and R, respectively.Given: h = 1.2 m, R = 10 m, s = 2 m.Allowable member stresses:Tension = 250 MPaCompression = 180 MPa1. If member KL has square section, determine the minimum dimension (mm).2. If member KL has circular section, determine the minimum diameter (mm).3. If member GH has circular section, determine the minimum diameter (mm).ANSWERS: (1) 31.73 mm; (2) 35.81 mm; (3) 18.49 mm
CORRECT AND DETAILED HANDWRITTEN SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED.
The cantilevered spandrel beam shown whose depth tapers from d1 to d2, has a constant width of 120mm. It carries a triangularly distributed end reaction.Given: d1 = 600 mm, d2 = 120 mm, L = 1 m, w = 100 kN/m1. Calculate the maximum flexural stress at the support, in kN-m.2. Determine the distance (m), from the free end, of the section with maximum flexural stress.3. Determine the maximum flexural stress in the beam, in MPa.ANSWERS: (1) 4.630 MPa; (2) 905.8688 m; (3) 4.65 MPa
Chapter 15 Solutions
Engineering Mechanics: Statics & Dynamics (14th Edition)
Ch. 15.2 - Determine the impulse of the force for t = 2 s.Ch. 15.2 - The 0.5kg ball strikes the rough ground and...Ch. 15.2 - Prob. 2FPCh. 15.2 - Prob. 3FPCh. 15.2 - The wheels of the 1.5-Mg car generate the traction...Ch. 15.2 - Prob. 5FPCh. 15.2 - A man kicks the 150-g ball such that it leaves the...Ch. 15.2 - If the coefficient of kinetic friction between the...Ch. 15.2 - Prob. 3PCh. 15.2 - Each of the cables can sustain a maximum tension...
Ch. 15.2 - A hockey puck is traveling to the left with a...Ch. 15.2 - A train consists of a 50-Mg engine and three cars,...Ch. 15.2 - Crates A and B weigh 100 lb and 50 lb,...Ch. 15.2 - Prob. 8PCh. 15.2 - Prob. 9PCh. 15.2 - The 50-kg crate is pulled by the constant force P....Ch. 15.2 - During operation the jack hammer strikes the...Ch. 15.2 - For a short period of time, the frictional driving...Ch. 15.2 - The 2.5-Mg van is traveling with a speed of 100...Ch. 15.2 - Prob. 14PCh. 15.2 - Prob. 15PCh. 15.2 - The choice of a seating material for moving...Ch. 15.2 - The towing force acting on the 400-kg safe varies...Ch. 15.2 - Prob. 18PCh. 15.2 - Prob. 19PCh. 15.2 - Prob. 20PCh. 15.2 - If it takes 35 s for the 50-Mg tugboat to increase...Ch. 15.2 - Prob. 22PCh. 15.2 - Prob. 23PCh. 15.2 - The motor pulls on the cable at A with a force F =...Ch. 15.2 - The balloon has a total mass of 400 kg including...Ch. 15.2 - Prob. 26PCh. 15.2 - Prob. 27PCh. 15.2 - Prob. 28PCh. 15.2 - Prob. 29PCh. 15.2 - Prob. 30PCh. 15.2 - Prob. 31PCh. 15.2 - Prob. 32PCh. 15.2 - The log has a mass of 500 kg and rests on the...Ch. 15.2 - Prob. 34PCh. 15.2 - Prob. 7FPCh. 15.2 - The cart and package have a mass of 20 kg and 5...Ch. 15.3 - The 5-kg block A has an initial speed of 5 m/s as...Ch. 15.3 - Prob. 10FPCh. 15.3 - Prob. 11FPCh. 15.3 - The cannon and support without a projectile have a...Ch. 15.3 - The 5-Mg bus B is traveling to the right at 20...Ch. 15.3 - Prob. 36PCh. 15.3 - A railroad car having a mass of 15 Mg is coasting...Ch. 15.3 - A ballistic pendulum consists of a 4-kg wooden...Ch. 15.3 - Prob. 40PCh. 15.3 - A 0.03-lb bullet traveling at 1300 ft/s strikes...Ch. 15.3 - A 0.03-lb bullet traveling at 1300 ft/s strikes...Ch. 15.3 - Prob. 43PCh. 15.3 - Prob. 44PCh. 15.3 - Prob. 45PCh. 15.3 - The two blocks A and B each have a mass of 5 kg...Ch. 15.3 - The 30-Mg freight car A and 15-Mg freight car B...Ch. 15.3 - Blocks A and B have masses of 40 kg and 60 kg,...Ch. 15.3 - Prob. 49PCh. 15.3 - Prob. 50PCh. 15.3 - Prob. 51PCh. 15.3 - The free-rolling ramp has a mass of 40 kg. A 10-kg...Ch. 15.3 - Block A has a mass of 5 kg and is placed on the...Ch. 15.3 - Solve Prob. 15-53 if the coefficient of kinetic...Ch. 15.3 - Prob. 55PCh. 15.3 - Prob. 56PCh. 15.3 - The 10-kg block is held at rest on the smooth...Ch. 15.3 - Prob. 13FPCh. 15.3 - Prob. 14FPCh. 15.4 - The 30-lb package A has a speed of 5 ft/s when it...Ch. 15.4 - The ball strikes the smooth wall with a velocity...Ch. 15.4 - Prob. 17FPCh. 15.4 - Prob. 18FPCh. 15.4 - Prob. 58PCh. 15.4 - Prob. 59PCh. 15.4 - Disk A has a mass of 2 kg and is sliding forward...Ch. 15.4 - Prob. 61PCh. 15.4 - Prob. 62PCh. 15.4 - Prob. 63PCh. 15.4 - Prob. 64PCh. 15.4 - A 1-lb ball A is traveling horizontally at 20 ft/s...Ch. 15.4 - Block A, having a mass m, is released from rest,...Ch. 15.4 - Prob. 67PCh. 15.4 - Prob. 68PCh. 15.4 - Prob. 69PCh. 15.4 - Prob. 70PCh. 15.4 - Prob. 71PCh. 15.4 - The tennis ball is struck with a horizontal...Ch. 15.4 - Prob. 73PCh. 15.4 - Two smooth disks A and B each have a mass of 0.5...Ch. 15.4 - Prob. 75PCh. 15.4 - Prob. 76PCh. 15.4 - The cue ball A is given an initial velocity (vA)1...Ch. 15.4 - Prob. 78PCh. 15.4 - Prob. 79PCh. 15.4 - A ball of negligible size and mass m is given a...Ch. 15.4 - Prob. 81PCh. 15.4 - The 20-lb box slides on the surface for which k =...Ch. 15.4 - Prob. 83PCh. 15.4 - Prob. 84PCh. 15.4 - Prob. 85PCh. 15.4 - Prob. 86PCh. 15.4 - Prob. 87PCh. 15.4 - Prob. 88PCh. 15.4 - Prob. 89PCh. 15.4 - Prob. 90PCh. 15.4 - The 200-g billiard ball is moving with a speed of...Ch. 15.4 - Prob. 92PCh. 15.4 - Disks A and B have a mass of 15 kg and 10 kg,...Ch. 15.4 - Prob. 19FPCh. 15.4 - Prob. 20FPCh. 15.7 - Initially the 5-kg block is moving with a constant...Ch. 15.7 - Prob. 22FPCh. 15.7 - Prob. 23FPCh. 15.7 - Prob. 24FPCh. 15.7 - Determine the angular momentum HO of the 6-lb...Ch. 15.7 - Determine the angular momentum HP of the 6-lb...Ch. 15.7 - Prob. 96PCh. 15.7 - Determine the angular momentum Hp, of each of the...Ch. 15.7 - Prob. 98PCh. 15.7 - Determine the angular momentum Hp of the 3-kg...Ch. 15.7 - Each ball has a negligible size and a mass of 10...Ch. 15.7 - The 800-lb roller-coaster car starts from rest on...Ch. 15.7 - The 800-lb roller-coaster car starts from rest on...Ch. 15.7 - A 4-lb ball B is traveling around in a circle of...Ch. 15.7 - A 4-lb ball B is traveling around in a circle of...Ch. 15.7 - The two blocks A and B each have a mass of 400 g....Ch. 15.7 - A small particle having a mass m is placed inside...Ch. 15.7 - If the rod of negligible mass is subjected to a...Ch. 15.7 - When the 2-kg bob is given a horizontal speed of...Ch. 15.7 - The elastic cord has an unstretched length l0 =...Ch. 15.7 - The amusement park ride consists of a 200-kg car...Ch. 15.7 - Prob. 111PCh. 15.7 - Prob. 112PCh. 15.7 - An earth satellite of mass 700 kg is launched into...Ch. 15.7 - Prob. 114PCh. 15.9 - Prob. 115PCh. 15.9 - Prob. 116PCh. 15.9 - Prob. 117PCh. 15.9 - Prob. 118PCh. 15.9 - Prob. 119PCh. 15.9 - The gauge pressure of water at A is 150.5 kPa....Ch. 15.9 - Prob. 121PCh. 15.9 - The fountain shoots water in the direction shown....Ch. 15.9 - A plow located on the front of a locomotive scoops...Ch. 15.9 - Prob. 124PCh. 15.9 - Water is discharged from a nozzle with a velocity...Ch. 15.9 - Prob. 126PCh. 15.9 - Prob. 127PCh. 15.9 - Prob. 128PCh. 15.9 - The water flow enters below the hydrant at C at...Ch. 15.9 - Sand drops onto the 2-Mg empty rail car at 50 kg/s...Ch. 15.9 - Prob. 131PCh. 15.9 - Prob. 132PCh. 15.9 - Prob. 133PCh. 15.9 - A rocket has an empty weight of 500 lb and carries...Ch. 15.9 - Prob. 135PCh. 15.9 - The rocket car has a mass of 2 Mg (empty) and...Ch. 15.9 - Prob. 137PCh. 15.9 - Prob. 138PCh. 15.9 - The missile weighs 40 000 lb. The constant thrust...Ch. 15.9 - Prob. 140PCh. 15.9 - Prob. 141PCh. 15.9 - The 12-Mg jet airplane has a constant speed of 950...Ch. 15.9 - Prob. 143PCh. 15.9 - Prob. 144PCh. 15.9 - Prob. 145PCh. 15.9 - Prob. 146PCh. 15.9 - Prob. 147PCh. 15.9 - Prob. 148PCh. 15.9 - Prob. 149PCh. 15.9 - Prob. 1CPCh. 15.9 - Prob. 2CPCh. 15.9 - Prob. 1RPCh. 15.9 - Prob. 2RPCh. 15.9 - Prob. 3RPCh. 15.9 - Prob. 4RPCh. 15.9 - The 200-g projectile is fired with a velocity of...Ch. 15.9 - Block A has a mass of 3 kg and is sliding on a...Ch. 15.9 - Two smooth billiard balls A and B have an equal...Ch. 15.9 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- CORRECT AND DETAILED HANDWRITTEN SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED. A concrete wall retains water as shown. Assume that the wall is fixed at the base. Given: H = 3 m, t = 0.5m, Concrete unit weight = 23 kN/m3Unit weight of water = 9.81 kN/m3(Hint: The pressure of water is linearly increasing from the surface to the bottom with intensity 9.81d.)1. Find the maximum compressive stress (MPa) at the base of the wall if the water reaches the top.2. If the maximum compressive stress at the base of the wall is not to exceed 0.40 MPa, what is the maximum allowable depth(m) of the water?3. If the tensile stress at the base is zero, what is the maximum allowable depth (m) of the water?ANSWERS: (1) 1.13 MPa, (2) 2.0 m, (3) 1.20 marrow_forwardCORRECT AND DETAILED HANDWRITTEN SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED. A short plate is attached to the center of the shaft as shown. The bottom of the shaft is fixed to the ground.Given: a = 75 mm, h = 125 mm, D = 38 mmP1 = 24 kN, P2 = 28 kN1. Calculate the maximum torsional stress in the shaft, in MPa.2. Calculate the maximum flexural stress in the shaft, in MPa.3. Calculate the maximum horizontal shear stress in the shaft, in MPa.ANSWERS: (1) 167.07 MPa; (2) 679.77 MPa; (3) 28.22 MPaarrow_forwardA counter flow double pipe heat exchanger is being used to cool hot oil from 320°F to 285°F using cold water. The water, which flows through the inner tube, enters the heat exchanger at 70°F and leaves at 175°F. The inner tube is ¾-std type L copper. The overall heat transfer coefficient based on the outside diameter of the inner tube is 140 Btu/hr-ft2-°F. Design conditions call for a total heat transfer duty (heat transfer rate between the two fluids) of 20,000 Btu/hr. Determine the required length of this heat exchanger (ft).arrow_forward
- ! Required information A one-shell-pass and eight-tube-passes heat exchanger is used to heat glycerin (cp=0.60 Btu/lbm.°F) from 80°F to 140°F by hot water (Cp = 1.0 Btu/lbm-°F) that enters the thin-walled 0.5-in-diameter tubes at 175°F and leaves at 120°F. The total length of the tubes in the heat exchanger is 400 ft. The convection heat transfer coefficient is 4 Btu/h-ft²°F on the glycerin (shell) side and 70 Btu/h-ft²°F on the water (tube) side. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the rate of heat transfer in the heat exchanger before any fouling occurs. Correction factor F 1.0 10 0.9 0.8 R=4.0 3.0 2.0.15 1.0 0.8.0.6 0.4 0.2 0.7 0.6 R= T1-T2 12-11 0.5 12-11 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 (a) One-shell pass and 2, 4, 6, etc. (any multiple of 2), tube passes P= T₁-11 The rate of heat transfer in the heat exchanger is Btu/h.arrow_forward! Required information Air at 25°C (cp=1006 J/kg.K) is to be heated to 58°C by hot oil at 80°C (cp = 2150 J/kg.K) in a cross-flow heat exchanger with air mixed and oil unmixed. The product of heat transfer surface area and the overall heat transfer coefficient is 750 W/K and the mass flow rate of air is twice that of oil. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Air Oil 80°C Determine the effectiveness of the heat exchanger.arrow_forwardIn an industrial facility, a counter-flow double-pipe heat exchanger uses superheated steam at a temperature of 155°C to heat feed water at 30°C. The superheated steam experiences a temperature drop of 70°C as it exits the heat exchanger. The water to be heated flows through the heat exchanger tube of negligible thickness at a constant rate of 3.47 kg/s. The convective heat transfer coefficient on the superheated steam and water side is 850 W/m²K and 1250 W/m²K, respectively. To account for the fouling due to chemical impurities that might be present in the feed water, assume a fouling factor of 0.00015 m²-K/W for the water side. The specific heat of water is determined at an average temperature of (30 +70)°C/2 = 50°C and is taken to be J/kg.K. Cp= 4181 Water Steam What would be the required heat exchanger area in case of parallel-flow arrangement? The required heat exchanger area in case of parallel-flow arrangement is 1m².arrow_forward
- A single-pass crossflow heat exchanger is used to cool jacket water (cp = 1.0 Btu/lbm.°F) of a diesel engine from 190°F to 140°F, using air (Cp = 0.245 Btu/lbm.°F) at inlet temperature of 90°F. Both air flow and water flow are unmixed. If the water and air mass flow rates are 85500 lbm/h and 400,000 lbm/h, respectively, determine the log mean temperature difference for this heat exchanger. Assume the correction factor F to be 0.92. Air flow (unmixed) Water flow (unmixed) The log mean temperature difference of the heat exchanger is °F.arrow_forwardusing the theorem of three moments, find all the reactions and supports, I need concise calculations only. the answers are at the bottom, I need concise steps and minimal explanationsarrow_forwardIn an industrial facility, a counter-flow double-pipe heat exchanger uses superheated steam at a temperature of 155°C to heat feed water at 30°C. The superheated steam experiences a temperature drop of 70°C as it exits the heat exchanger. The water to be heated flows through the heat exchanger tube of negligible thickness at a constant rate of 3.47 kg/s. The convective heat transfer coefficient on the superheated steam and water side is 850 W/m²K and 1250 W/m²K, respectively. To account for the fouling due to chemical impurities that might be present in the feed water, assume a fouling factor of 0.00015 m² K/W for the water side. The specific heat of water is determined at an average temperature of (30+70)°C/2 = 50°C and is taken to be Cp J/kg-K. Water Steam Determine the heat exchanger area required to maintain the exit temperature of the water to a minimum of 70°C. The heat exchanger area required isarrow_forward
- Stress, ksi 160 72 150- 140 80 70 ༄ ྃ ༈ ཎྜ རྦ ༅ ཎྜ ྣཧྨ ➢ 130 120 110 100 90 2.0 2.8 3.6 4.4 5 Wire diameter, mm 6.0 6.8 2 7.6 8.4 Compression and extension springs. ASTM A227 Class II Light service Average service 0.020 0.060 0.100 0.140 0.180 0.220 0.260 0.300 0.340 0.380 0.420 0.460 0.500 Wire diameter, in Torsional stress due to initial tension, ksi 10 ४ 20 Preferred range 100 Stress, MPa 9.2 10.0 10.8 11.6 12.4 1100 1035 965 895 825 760 Severe service 690 620 550 50 150 3456789 10 11 12 13 14 15 16 Spring index, C = DJD FIGURE 18-21 Recommended torsional shear stress in an extension spring due to initial tension (Data from Associated Spring, Barnes Group, Inc.) 50 200 485 Stress, MPaarrow_forwardBolted Joint Design Bolted Frames Total Force due to door weight: P = 240 lb Number of Bolts: N = Distance to Bolt C/L: a = 4 N/A Bolt Material - Allowable shear stress of bolt material: T₂ = x Distance from Bolt centroid to bolt: x = y Distance from Bolt centroid to bolt: y = Degrees per Radian- Results y-Load on each bolt: F, = Moment resisted by bolt pattern: M = Radial distance from Bolt centroid to bolt: r = Sum squares of all radial distances: Σr² Force on each bolt to resist moment: F, - Angle for force composition: e= X-Force on each bolt to resist moment: F- y-Force on each bolt to resist moment: Fly Total y-Force on each bolt: Fy = Resultant force on bolt 1: R₁ = Required shear stress area for a bolt: A₂ = ASTM Grade A307 Steel 10,000 0 psi from Table 20-1 3.0 57.296 in degrees lb per bolt lb-in Formula FS-P/N M-Px XB r = (x² + y²)0.5 in² Σ 4r² Mr F₁ = Στ lb degrees lb lb lb Minimum Bolt Diameter: Din = Rounded up Bolt Diameter: D = 55 P. 1.5 in 2 in (3x) 1 in This bracket…arrow_forwardUniversity of Babylon Collage of Engineering/ Al-Musayab Department of Automobiles Final Examination/ Stage: 3rd Notes: Answer 4 questions only 2023-2202 Subject: Theory of vehicles Date: 2023\06\10-Saturday Time: Three Hours Course 2nd Attempt 1st Q1: A Hooke's coupling connects two shafts whose axes are inclined at 30°. The of the driven shaft? Find the maximum value of retardation or acceleration and driving shaft rotates uniformly at 600 rpm. What are the extreme angular velocities state the angle where both will occur. (12.5 Marks) Q2: Four masses, A, B, C, and D), revolve at equal radii and are equally spaced along a shaft. The mass B is 7 kg, and the radius of C and D make angles of 90° and 240°, respectively, with the radius of B. Find the magnitude of the masses A, C, and D and the angular position of A so that the system may be completely balanced. (12.5 Marks) Q3: A cam has straight worked faces that are tangential to a base circle of diameter 90 mm. The follower is a roller…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L

International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Pressure Vessels Introduction; Author: Engineering and Design Solutions;https://www.youtube.com/watch?v=Z1J97IpFc2k;License: Standard youtube license