The mass fraction and the apparent molecular weight of the products and the mass of air required per unit mass of fuel burned.
Answer to Problem 38P
The mass fraction of carbon dioxide is
Explanation of Solution
Express the total mass of the coal when the ash is substituted.
Here, mass of ash is
Express the mass fraction of carbon.
Here, mass of carbon is
Express the mass fraction of hydrogen.
Here, mass of hydrogen is
Express the mass fraction of oxygen.
Here, mass of oxygen is
Express the mass fraction of nitrogen.
Here, mass of nitrogen is
Express the mass fraction of sulphur.
Here, mass of sulphur is
Express the number of moles of carbon.
Here, molar mass of carbon is
Express the number of moles of hydrogen.
Here, molar mass of hydrogen is
Express the number of moles of oxygen.
Here, molar mass of oxygen is
Express the number of moles of nitrogen.
Here, molar mass of nitrogen is
Express the number of moles of sulphur.
Here, molar mass of sulphur is
Express the total number of moles.
Express the mole fraction of carbon.
Express the mole fraction of hydrogen.
Express the mole fraction of oxygen.
Express the mole fraction of nitrogen.
Express the mole fraction of sulphur.
Express the total molar mass of the products.
Here, number of moles of carbon dioxide, carbon monoxide, water, sulphur dioxide, and nitrogen is
Express the mole fraction of carbon dioxide.
Here, molar mass of carbon dioxide is
Express the mole fraction of carbon monoxide.
Here, molar mass of carbon monoxide is
Express the mole fraction of water.
Here, molar mass of water is
Express the mole fraction of sulphur dioxide.
Here, molar mass of sulphur dioxide is
Express the mole fraction of nitrogen.
Here, molar mass of nitrogen is
Express the total number of moles of product.
Express the apparent molecular weight of the product gas.
Express the air-fuel mass ratio.
Conclusion:
Refer Table A-1, “molar mass, gas constant, and the critical point properties”, and write the molar masses.
Here, molar mass of air is
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Express the combustion equation.
Perform the species balancing:
Carbon balance:
Hydrogen balance:
Sulphur balance:
Oxygen balance:
Nitrogen balance:
Substitute
Refer Equation (XXVIII), and write the number of moles of products.
Refer Table A-1, “molar mass, gas constant, and the critical point properties”, and write the molar masses.
Substitute
Substitute
Hence, the mass fraction of carbon dioxide is
Substitute
Hence, the mass fraction of carbon monoxide is
Substitute
Hence, the mass fraction of water is
Substitute
Hence, the mass fraction of sulphur dioxide is
Substitute
Hence, the mass fraction of nitrogen is
Substitute
Substitute
Hence, the apparent molecular weight of the products is
Since each
Refer Equation (XXVIII), and write the number of moles of reactants.
Substitute
Hence, the mass of air required per unit mass of fuel burned is
Want to see more full solutions like this?
Chapter 15 Solutions
Thermodynamics: An Engineering Approach
- : +0 العنوان use only In conventional drawing of a stainless steel wire, the original diameter D.-3mm, the area reduction at each die stand r-40%, and the proposed final diameter D.-0.5mm, how many die stands are required to complete this process. онarrow_forwardIn non-continuous dieless drawing process for copper tube as shown in Fig. (1), take the following data: Do-20mm, to=3mm, D=12mm, ti/to=0.6 and vo-15mm/s. Calculate: (1) area reduction RA, (2) drawing velocity v. Knowing that: t₁: final thickness D₁ V. Fig. (1) Darrow_forwardA vertical true centrifugal casting process is used to produce bushings that are 250 mm long and 200 mm in outside diameter. If the rotational speed during solidification is 500 rev/min, determine the inside radii at the top and bottom of the bushing if R-2Rb. Take: 8-9.81 m/sarrow_forward
- In conventional drawing of a stainless steel wire, the original diameter D.-3mm, the area reduction at each die stand r-40%, and the proposed final diameter D₁-0.5mm, how many die stands are required to complete this process.arrow_forwardA vertical true centrifugal casting process is used to produce bushings that are 250 mm long and 200 mm in outside diameter. If the rotational speed during solidification is 500 rev/min, determine the inside radii at the top and bottom of the bushing if R-2Rb. Take: 8-9.81 m/sarrow_forwardIn non-continuous dieless drawing process for copper tube as shown in Fig. (1), take the following data: Do-20mm, to=3mm, D=12mm, ti/to=0.6 and vo-15mm/s. Calculate: (1) area reduction RA, (2) drawing velocity v. Knowing that: t₁: final thickness D₁ V. Fig. (1) Darrow_forward
- -6- 8 من 8 Mechanical vibration HW-prob-1 lecture 8 By: Lecturer Mohammed O. attea The 8-lb body is released from rest a distance xo to the right of the equilibrium position. Determine the displacement x as a function of time t, where t = 0 is the time of release. c=2.5 lb-sec/ft wwwww k-3 lb/in. 8 lb Prob. -2 Find the value of (c) if the system is critically damping. Prob-3 Find Meq and Ceq at point B, Drive eq. of motion for the system below. Ш H -7~ + 目 T T & T тт +arrow_forwardQ For the following plan of building foundation, Determine immediate settlement at points (A) and (B) knowing that: E,-25MPa, u=0.3, Depth of foundation (D) =1m, Depth of layer below base level of foundation (H)=10m. 3m 2m 100kPa A 2m 150kPa 5m 200kPa Barrow_forwardW PE 2 43 R² 80 + 10 + kr³ Ø8=0 +0 R²+J+ kr200 R² + J-) + k r² = 0 kr20 kr20 8+ W₁ = = 0 R²+1) R²+J+) 4 lec 8.pdf Mechanical vibration lecture 6 By: Lecturer Mohammed C. Attea HW1 (Energy method) Find equation of motion and natural frequency for the system shown in fig. by energy method. m. Jo 000 HW2// For the system Fig below find 1-F.B.D 2Eq.of motion 8 wn 4-0 (1) -5- marrow_forward
- The hose supplying the cylinder operating the bucket of a large excavator has fluid at 1000 psi flowing at 5 gpm. What is theavailable power in the line?arrow_forwardQ For the following plan of building foundation, Determine immediate settlement at points (A) and (B) knowing that: E,-25MPa, u=0.3, Depth of foundation (D) =1m, Depth of layer below base level of foundation (H)=10m. 3m 2m 100kPa A 2m 150kPa 5m 200kPa Barrow_forwardGiven the following data for crack rocker mechanism. If θ2 = 4π/3 and ω2 = 1 rad/s, Determine all possible values of ω4 and ω3 analytically. The lengths of links are a = 2, b = 8, c = 7 and d = 9 in cm.arrow_forward
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning