EBK THERMODYNAMICS: AN ENGINEERING APPR
9th Edition
ISBN: 8220106796979
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 15.7, Problem 133FEP
A fuel is burned during a steady-flow combustion process. Heat is lost to the surroundings at 300 K at a rate of 1120 kW. The entropy of the reactants entering per unit time is 17 kW/K and that of the products is 15 kW/K. The total rate of exergy destruction during this combustion process is
(a)
520 kW
(b)
600 kW
(c)
1120 kW
(d)
340 kW
(e)
739 kW
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Liquid n-Butane (C4H10) at 25°C enters a
combustion chamber at a rate of 0.9 kg/min
and is
burned completely with 130% excess air that
enters the combustion chamber at 290 K and
100
kPa, and the exit temperature of the
combustion gases is 1280 K. Determine the
maximum work potential (reversible work) per
kg of the n-Butane fuel.
Why am I not getting this right , am I doing a calculation wrong for the final answer
(m=q2 x h1-h2=8470 x 2684.9-943.62=22740159.38 ) ?
A boiler furnace releases 11 000 kJ of heat for each kg of fuel burned and produces dry saturated steam at 12 000 kPa from feedwater at 220°C. How many kg of steam will be produced for each kg of fuel burned if the boiler had an efficiency of 77%?.
heat generated by burning 1 kg of fuel , q1=11000 kj/kg
heat used to boil water by burning 1kg of fuel ; q2=q1x difference fraction=11000x0.77=8470 kj
from steam tables:
enthalpy of saturated steam @ 12000 kpa , h1=2684.9 kj/kg
enthalpy of water @ 220 degrees celcius=943.62
mass of steam produced by burning 1 kg of fuel ; m=q2 x h1-h2=8470 x 2684.9-943.62=22740159.38
A 2 MW Diesel engine consumes 1 bbl (42 gallons) of industrial fuel of 25 0API at 27 oC in one
day operation. Calculate the amount of heat liberated by the fuel as a result of combustion.
Chapter 15 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 15.7 - What are the approximate chemical compositions of...Ch. 15.7 - How does the presence of N2 in air affect the...Ch. 15.7 - Prob. 3PCh. 15.7 - Prob. 4PCh. 15.7 - Is the airfuel ratio expressed on a mole basis...Ch. 15.7 - How does the presence of moisture in air affect...Ch. 15.7 - Prob. 7PCh. 15.7 - Prob. 8PCh. 15.7 - Prob. 9PCh. 15.7 - Are complete combustion and theoretical combustion...
Ch. 15.7 - What does 100 percent theoretical air represent?Ch. 15.7 - Consider a fuel that is burned with (a) 130...Ch. 15.7 - What are the causes of incomplete combustion?Ch. 15.7 - Which is more likely to be found in the products...Ch. 15.7 - Methane (CH4) is burned with the stoichiometric...Ch. 15.7 - Prob. 16PCh. 15.7 - n-Butane fuel (C4H10) is burned with the...Ch. 15.7 - Prob. 18PCh. 15.7 - Propane (C3H8) is burned with 75 percent excess...Ch. 15.7 - Propane fuel (C3H8) is burned with 30 percent...Ch. 15.7 - In a combustion chamber, ethane (C2H6) is burned...Ch. 15.7 - Prob. 22PCh. 15.7 - Prob. 23PCh. 15.7 - Ethane (C2H6) is burned with 20 percent excess air...Ch. 15.7 - Octane (C8H18) is burned with 250 percent...Ch. 15.7 - Prob. 26PCh. 15.7 - A fuel mixture of 60 percent by mass methane (CH4)...Ch. 15.7 - Prob. 28PCh. 15.7 - A certain natural gas has the following volumetric...Ch. 15.7 - Prob. 30PCh. 15.7 - A gaseous fuel with a volumetric analysis of 45...Ch. 15.7 - Prob. 33PCh. 15.7 - The fuel mixer in a natural gas burner mixes...Ch. 15.7 - Prob. 35PCh. 15.7 - Prob. 36PCh. 15.7 - Determine the fuelair ratio when coal from...Ch. 15.7 - Prob. 38PCh. 15.7 - Prob. 39PCh. 15.7 - Prob. 40PCh. 15.7 - Prob. 41PCh. 15.7 - When are the enthalpy of formation and the...Ch. 15.7 - Prob. 43PCh. 15.7 - Prob. 44PCh. 15.7 - Prob. 45PCh. 15.7 - Prob. 46PCh. 15.7 - Prob. 48PCh. 15.7 - Repeat Prob. 1546 for liquid octane (C8H18).Ch. 15.7 - Ethane (C2H6) is burned at atmospheric pressure...Ch. 15.7 - Reconsider Prob. 1550. What minimum pressure of...Ch. 15.7 - Calculate the HHV and LHV of gaseous n-octane fuel...Ch. 15.7 - Prob. 53PCh. 15.7 - Consider a complete combustion process during...Ch. 15.7 - Prob. 56PCh. 15.7 - Prob. 57PCh. 15.7 - Prob. 58PCh. 15.7 - Propane fuel (C3H8) is burned with an airfuel...Ch. 15.7 - Prob. 60PCh. 15.7 - Prob. 61PCh. 15.7 - Prob. 62PCh. 15.7 - Octane gas (C8H18) at 25C is burned steadily with...Ch. 15.7 - Liquid ethyl alcohol [C2H5OH(l)] at 25C is burned...Ch. 15.7 - Prob. 66PCh. 15.7 - A gaseous fuel mixture that is 40 percent propane...Ch. 15.7 - A constant-volume tank contains a mixture of 120 g...Ch. 15.7 - Prob. 70PCh. 15.7 - Prob. 71PCh. 15.7 - Prob. 72PCh. 15.7 - A fuel is completely burned first with the...Ch. 15.7 - Prob. 74PCh. 15.7 - Prob. 75PCh. 15.7 - What is the adiabatic flame temperature of methane...Ch. 15.7 - Octane gas (C8H18) at 25C is burned steadily with...Ch. 15.7 - Acetylene gas (C2H2) at 25C is burned during a...Ch. 15.7 - Ethyl alcohol [C2H5OH(g)] is burned with 200...Ch. 15.7 - Prob. 81PCh. 15.7 - Prob. 82PCh. 15.7 - Reconsider Prob. 1582. The combustion products are...Ch. 15.7 - Express the increase of entropy principle for...Ch. 15.7 - Prob. 85PCh. 15.7 - What does the Gibbs function of formation gf of a...Ch. 15.7 - Liquid octane (C8H18) enters a steady-flow...Ch. 15.7 - Prob. 88PCh. 15.7 - Reconsider Prob. 1588. The automobile engine is to...Ch. 15.7 - Benzene gas (C6H6) at 1 atm and 77F is burned...Ch. 15.7 - Prob. 91PCh. 15.7 - n-Octane [C8H18(l)] is burned in the...Ch. 15.7 - A steady-flow combustion chamber is supplied with...Ch. 15.7 - Prob. 94RPCh. 15.7 - Prob. 95RPCh. 15.7 - Prob. 96RPCh. 15.7 - Prob. 97RPCh. 15.7 - Prob. 98RPCh. 15.7 - Prob. 99RPCh. 15.7 - n-Butane (C4H10) is burned with the stoichiometric...Ch. 15.7 - A gaseous fuel mixture of 60 percent propane...Ch. 15.7 - Calculate the higher and lower heating values of...Ch. 15.7 - Prob. 103RPCh. 15.7 - Methane gas (CH4) at 25C is burned steadily with...Ch. 15.7 - A 6-m3 rigid tank initially contains a mixture of...Ch. 15.7 - Propane gas (C3H8) enters a steady-flow combustion...Ch. 15.7 - Determine the highest possible temperature that...Ch. 15.7 - Liquid propane [C3H8(l)] enters a combustion...Ch. 15.7 - Prob. 109RPCh. 15.7 - Prob. 110RPCh. 15.7 - Prob. 111RPCh. 15.7 - A steam boiler heats liquid water at 200C to...Ch. 15.7 - Repeat Prob. 15112 using a coal from Utah that has...Ch. 15.7 - Liquid octane (C8H18) enters a steady-flow...Ch. 15.7 - Prob. 115RPCh. 15.7 - Consider the combustion of a mixture of an...Ch. 15.7 - Prob. 117RPCh. 15.7 - A fuel is burned steadily in a combustion chamber....Ch. 15.7 - A fuel is burned with 70 percent theoretical air....Ch. 15.7 - Prob. 126FEPCh. 15.7 - One kmol of methane (CH4) is burned with an...Ch. 15.7 - The higher heating value of a hydrocarbon fuel...Ch. 15.7 - Acetylene gas (C2H2) is burned completely during a...Ch. 15.7 - An equimolar mixture of carbon dioxide and water...Ch. 15.7 - A fuel is burned during a steady-flow combustion...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A fuel oil is burned with air in a boiler. Combustion produces 813 kW of thermal energy (heat), 65% of which is transferred as heat to boiler tubes that pass through the furnace. Combustion products pass from the furnace to a chimney at 550°C. The water enters the boiler as a liquid at 30°C and exits as a saturated steam at 20 bar (absolute).(a) Calculate the rate (kg/h) of steam production.(b) Use the steam tables to estimate the volumetric flow of the steam produced.(c) What happens to the 35% of thermal energy released by combustion that is not used to produce steam?arrow_forwardCombustion gases enter a gas turbine at 627°C and 1.2 MPa at a rate of 2.5 kg/s and leave at 527°C and 500 kPa. It is estimated that heat is lost from the turbine at a rate of 20 kW. Using air properties for the combustion gases and assuming the surroundings to be at 25°C and 100 kPa, determine the exergy destroyed within the turbine.arrow_forward1. The heat produced in a boiler is transferred from the combustion products to the water. While the temperature of the combustion products decreases from 1100 °C to 550 °C, the pressure remains constant at 0.1 MPa. The average specific heat at constant pressure of the combustion products is 1.09 kJ/kg.K. The water enters the system at 0.8 MPa and 150 °C, and leaves at 0.8 MPa and 250 °C. Determine the second law efficiency and the irreversibility for each kilogram of water vaporized for this process. Note: This is a thermodynamics course question. Please provide a solution that is clear and quick.arrow_forward
- In an evaporator of an air conditioning system, R134a enters at a quality of 0.2 and exits as saturated vapor at a temperature of -10 C. Air enters the evaporator unit at a temperature of 33 C and exits at 17 C with a mass flow rate of 0.3 kg/s. Calculate the rate of exergy destroyed in the evaporator in kW. Take the surrounding temperature to be 35 C. Hint: You will need to calculate the refrigerant mass flow rate first by taking the entire evaporator as a system and writing the first law of thermodynamics.arrow_forward3. Liquid octane (CaH18) enters the combustion chamber of a gas turbine steadily at 1 atm and 25°C, and it is burned with air that enters the combustion chamber at the same state. If the reaction is stoichiometric and the products leave the combustion chamber at a pressure of 1 atm and a temperature of 2400 K, determine the entropy generated (Sgen) in the reaction. [Ru = 8.314 kJ/kg.K)arrow_forward2. In a power station, saturated steam is generated at 252°C by transferring heat from the hot gases gener- ated in the combustion chamber. The gases are cooled from 1100°C to 550°C during transferring the heat for steam generation. Determine the increase in total entropy of the combined system of gas and steam and increase in unavailable energy on the basis of one kg of steam generated. Assume water enters the boiler at saturated condition and leaves as saturated steam. [Ans. 1.99 kJ/K ; 597 kJ/kg of steam formed]arrow_forward
- I need the answer as soon as possiblearrow_forwardA fixed mass 8 kg of helium (R = 2.0769 kJ/kg.K) undergoes a process from an initial state of 3 m/kg and 15°C to a final state of 0.5 m/kg and 80°C. Assuming the surrounding condition at 25°C and 1 atm, calculate the exergy change (kJ) of the helium during the process. (Average specific heat at constant volume of helium is 3.1156 kJ/kg.K)arrow_forwardDefine the Mechanisms of exergy transfer.arrow_forward
- A. 2 000-kW diesel engine consumes 1 bbl of industrial fuel of 25°API at 80.6°F in a single- day operation. Determine the amount of heat liberated by the fuel as a result of combustion, in GJarrow_forwardOctane is heated in a heat exchanger under constant pressure of 10 bar from 200 K to 400 K. Use the SRK equation to calculate the change in entropy of the system. Report your answer in units of J/(mol K) using three decimal places. The ideal gas heat capacity of octane may be assumed constant and CPig/R=23.174. Under these conditions octane is a liquid.arrow_forwardPropane gas C3H8 enters a gas turbine at 20oC and completely burns with 200% of theoretical air entering at 20oC, 1 atm and with a volumtric flow rate of 40 m3/s. If the products of combustion exit the turbine at 880 K, 1 atm and the fuel and air entering having almost zero velocity, determine the thrust produced by the turbine in kN.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamic Availability, What is?; Author: MechanicaLEi;https://www.youtube.com/watch?v=-04oxjgS99w;License: Standard Youtube License