Mathematical Methods in the Physical Sciences
3rd Edition
ISBN: 9780471198260
Author: Mary L. Boas
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 15.6, Problem 13P
To determine
The proof that
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please solve the following Statistics and Probability Problem (show all work) :
The probability that a patient recovers from a rare blood disease is 0.4 and 10 people are known to havecontracted this disease. Let X denote the random variable which denotes the number of patient who survivefrom the disease.1. Plot the probability mass function (pmf) of X.2. Plot the cumulative distribution function (cdf) of X.3. What is the probability that at least 8 survive, i.e., P {X ≥ 8}?4. What is the probability that 3 to 8 survive, i.e., P {3 ≤ X ≤ 8}?
2) Compute the following anti-derivative.
√1x4 dx
Please solve the following Probability and Statistics problem (please double check solution and provide explanation):
A binary communication channel carries data as one of two types of signals denoted by 0 and 1. Owing tonoise, a transmitted 0 is sometimes received as a 1 and a transmitted 1 is sometimes received as a 0. For agiven channel, assume a probability of 0.94 that a transmitted 0 is correctly received as a 0 and a probability0.91 that a transmitted 1 is received as a 1. Further assume a probability of 0.45 of transmitting a 0. If asignal is sent, determine
1. Probability that a 1 is received2. Probability that a 0 is received3. Probability that a 1 was transmitted given that a 1 was received4. Probability that a 0 was transmitted given that a 0 was received5. Probability of an error
Chapter 15 Solutions
Mathematical Methods in the Physical Sciences
Ch. 15.1 - If you select a three-digit number at random, what...Ch. 15.1 - Three coins are tossed; what is the probability...Ch. 15.1 - In a box there are 2 white, 3 black, and 4 red...Ch. 15.1 - A single card is drawn at random from a shuffled...Ch. 15.1 - Given a family of two children (assume boys and...Ch. 15.1 - A trick deck of cards is printed with the hearts...Ch. 15.1 - A letter is selected at random from the alphabet....Ch. 15.1 - An integer N is chosen at random with 1N100. What...Ch. 15.1 - You are trying to find instrument A in a...Ch. 15.1 - A shopping mall has four entrances, one on the...
Ch. 15.2 - Set up an appropriate sample space for each of...Ch. 15.2 - Set up an appropriate sample space for each of...Ch. 15.2 - Set up an appropriate sample space for each of...Ch. 15.2 - Set up an appropriate sample space for each of...Ch. 15.2 - Set up an appropriate sample space for each of...Ch. 15.2 - Set up an appropriate sample space for each of...Ch. 15.2 - Set up an appropriate sample space for each of...Ch. 15.2 - Set up an appropriate sample space for each of...Ch. 15.2 - Set up an appropriate sample space for each of...Ch. 15.2 - Set up an appropriate sample space for each of...Ch. 15.2 - Set up several nonuniform sample spaces for the...Ch. 15.2 - Use the sample space of Example 1 above, or one or...Ch. 15.2 - A student claims in Problem 1.5 that if one child...Ch. 15.2 - Two dice are thrown. Use the sample space ( 2.4 )...Ch. 15.2 - Use both the sample space (2.4) and the sample...Ch. 15.2 - Given an nonuniform sample space and the...Ch. 15.2 - Two dice are thrown. Given the information that...Ch. 15.2 - Are the following correct nomuniform sample spaces...Ch. 15.2 - Consider the set of all permutations of the...Ch. 15.3 - (a) Set up a sample space for the 5 black and 10...Ch. 15.3 - Prove (3.1) for a nonuniform sample space. Hints:...Ch. 15.3 - What is the probability of getting the sequence...Ch. 15.3 - (a) A weighted coin has probability of 23 of...Ch. 15.3 - What is the probability that a number n,1n99, is...Ch. 15.3 - A card is selected from a shuffled deck. What is...Ch. 15.3 - (a) Note that (3.4) assumes P(A)0 since PA(B) is...Ch. 15.3 - Show that...Ch. 15.3 - Prob. 9PCh. 15.3 - Three typed letters and their envelopes are piled...Ch. 15.3 - In paying a bill by mail, you want to put your...Ch. 15.3 - (a) A loaded die has probabilities...Ch. 15.3 - (a) A candy vending machine is out of order. The...Ch. 15.3 - A basketball player succeeds in making a basket 3...Ch. 15.3 - Use Bayes' formula ( 3.8 ) to repeat these simple...Ch. 15.3 - Suppose you have 3 nickels and 4 dimes in your...Ch. 15.3 - (a) There are 3 red and 5 black balls in one box...Ch. 15.3 - Two cards are drawn at random from a shuffled...Ch. 15.3 - Suppose it is known that 1 of the population have...Ch. 15.3 - Some transistors of two different kinds (call them...Ch. 15.3 - Two people are taking turns tossing a pair of...Ch. 15.3 - Repeat Problem 21 if the players toss a pair of...Ch. 15.3 - A thick coin has 37 probability of falling heads,...Ch. 15.4 - (a) There are 10 chairs in a row and 8 people to...Ch. 15.4 - In the expansion of (a+b)n (see Example 2), let...Ch. 15.4 - A bank allows one person to have only one savings...Ch. 15.4 - Five cards are dealt from a shuffled deck. What is...Ch. 15.4 - A bit (meaning binary digit) is 0 or 1. An ordered...Ch. 15.4 - A so-called 7 -way lamp has three 60 -watt bulbs...Ch. 15.4 - What is the probability that the 2 and 3 of clubs...Ch. 15.4 - Two cards are drawn from a shuffled deck. What is...Ch. 15.4 - Two cards are drawn from a shuffled deck. What is...Ch. 15.4 - What is the probability that you and a friend have...Ch. 15.4 - The following game was being played on a busy...Ch. 15.4 - Consider Problem 10 for different months of birth....Ch. 15.4 - Generalize Example 3 to show that the number of...Ch. 15.4 - (a) Find the probability that in two tosses of a...Ch. 15.4 - Set up the uniform sample spaces for the problem...Ch. 15.4 - Do Problem 15 for 2 particles in 2 boxes. Using...Ch. 15.4 - Find the number of ways of putting 2 particles in...Ch. 15.4 - Find the number of ways of putting 3 particles in...Ch. 15.4 - (a) Following the methods of Examples 3, 4, and 5,...Ch. 15.4 - (a) In Example 5, a mathematical model is...Ch. 15.4 - The following problem arises in quantum mechanics...Ch. 15.4 - Suppose 13 people want to schedule a regular...Ch. 15.4 - Do Problem 22 if one person is busy 3 evenings,...Ch. 15.5 - Set up sample spaces for Problems 1 to 7 and list...Ch. 15.5 - Set up sample spaces for Problems 1 to 7 and list...Ch. 15.5 - Set up sample spaces for Problems 1 to 7 and list...Ch. 15.5 - Set up sample spaces for Problems 1 to 7 and list...Ch. 15.5 - Set up sample spaces for Problems 1 to 7 and list...Ch. 15.5 - Set up sample spaces for Problems 1 to 7 and list...Ch. 15.5 - Set up sample spaces for Problems 1 to 7 and list...Ch. 15.5 - Would you pay $10 per throw of two dice if you...Ch. 15.5 - Prob. 9PCh. 15.5 - Let be the average of the random variable x. Then...Ch. 15.5 - Show that the expected number of heads in a single...Ch. 15.5 - Use Problem 9 to find the expected value of the...Ch. 15.5 - Show that adding a constant K to a random variable...Ch. 15.5 - As in Problem 11, show that the expected number of...Ch. 15.5 - Use Problem 9 to find x in Problem 7.Ch. 15.5 - Show that 2=Ex22. Hint: Write the definition of 2...Ch. 15.5 - Use Problem 16 to find in Problems 2, 6, and 7.Ch. 15.6 - (a) Find the probability density function f(x) for...Ch. 15.6 - It is shown in the kinetic theory of gases that...Ch. 15.6 - A ball is thrown straight up and falls straight...Ch. 15.6 - In Problem 1 we found the probability density...Ch. 15.6 - The probability for a radioactive particle to...Ch. 15.6 - A circular garden bed of radius 1m is to be...Ch. 15.6 - (a) Repeat Problem 6 where the circular area is...Ch. 15.6 - Given that a particle is inside a sphere of radius...Ch. 15.6 - Prob. 9PCh. 15.6 - Do Problem 5.10 for a continuous distribution.Ch. 15.6 - Do Problem 5.13 for a continuous distribution.Ch. 15.6 - Do Problem 5.16 for a continuous distribution.Ch. 15.6 - Prob. 13PCh. 15.6 - Prob. 14PCh. 15.6 - Show that the covariance of two independent (see...Ch. 15.6 - Prob. 16PCh. 15.7 - For the values of n indicated in Problems 1 to 4 :...Ch. 15.7 - For the values of n indicated in Problems 1 to 4:...Ch. 15.7 - For the values of n indicated in Problems 1 to 4:...Ch. 15.7 - For the values of n indicated in Problems 1 to 4:...Ch. 15.7 - Write the formula for the binomial density...Ch. 15.7 - For the given values of n and p in Problems 6 to...Ch. 15.7 - For the given values of n and p in Problems 6 to...Ch. 15.7 - For the given values of n and p in problems 6 to...Ch. 15.7 - Use the second method of Problem 5.11 to show that...Ch. 15.7 - Show that the most probable number of heads in n...Ch. 15.7 - Use the method of Problem 10 to show that for the...Ch. 15.7 - Let x= number of heads in one toss of a coin. What...Ch. 15.7 - Generalize Problem 12 to show that for the general...Ch. 15.8 - Verify that for a random variable x with normal...Ch. 15.8 - Do Problem 6.4 by comparing eax2 with f(x) in...Ch. 15.8 - The probability density function for the x...Ch. 15.8 - Prob. 4PCh. 15.8 - Computer plot on the same axes the normal density...Ch. 15.8 - Do Problem 5 for =16,13,1.Ch. 15.8 - By computer find the value of the normal...Ch. 15.8 - Carry through the following details of a...Ch. 15.8 - Computer plot a graph like Figure 8.3 of the...Ch. 15.8 - Computer plot graphs like Figure 8.2 but with p12...Ch. 15.8 - As in Examples 1 and 2, use (a) the binomial...Ch. 15.8 - As in Examples 1 and 2, use (a) the binomial...Ch. 15.8 - As in Examples 1 and 2, use (a) the binomial...Ch. 15.8 - As in Examples 1 and 2, use (a) the binomial...Ch. 15.8 - As in Examples 1 and 2, use (a) the binomial...Ch. 15.8 - As in Examples 1 and 2, use (a) the binomial...Ch. 15.8 - As in Examples 1 and 2, use (a) the binomial...Ch. 15.8 - As in Examples 1 and 2, use (a) the binomial...Ch. 15.8 - As in Examples 1 and 2, use (a) the binomial...Ch. 15.8 - As in Examples 1 and 2, use (a) the binomial...Ch. 15.8 - As in Examples 1 and 2, use (a) the binomial...Ch. 15.8 - As in Examples 1 and 2, use (a) the binomial...Ch. 15.8 - As in Examples 1 and 2, use (a) the binomial...Ch. 15.8 - As in Examples 1 and 2, use (a) the binomial...Ch. 15.8 - As in Examples 1 and 2, use (a) the binomial...Ch. 15.9 - Solve the sequence of differential equations (9.4)...Ch. 15.9 - Show that the average value of a random variable n...Ch. 15.9 - In an alpha-particle counting experiment the...Ch. 15.9 - Suppose you receive an average of 4 phone calls...Ch. 15.9 - Suppose that you have 5 exams during the 5 days of...Ch. 15.9 - If you receive, on the average, 5 email messages...Ch. 15.9 - In a club with 500 members, what is the...Ch. 15.9 - If there are 100 misprints in a magazine of 40...Ch. 15.9 - If there are, on the average, 7 defects in a new...Ch. 15.9 - Derive equation ( 9.9 ) as follows: In C(n,x),...Ch. 15.9 - Suppose 520 people each have a shuffled deck of...Ch. 15.9 - Computer plot on the same axes graphs of the...Ch. 15.9 - Computer plot on the same axes a graph of the...Ch. 15.10 - Let m1,m2,,mn be a set of measurements, and define...Ch. 15.10 - Let x1,x2,,xn be independent random variables,...Ch. 15.10 - Define s by the equation s2=(1/n)i=1nxix2. Show...Ch. 15.10 - Assuming a normal distribution, find the limits h...Ch. 15.10 - Show that if w=xy or w=x/y, then ( 10.14) gives...Ch. 15.10 - By expanding w(x,y,z) in a three-variable power...Ch. 15.10 - Prob. 7PCh. 15.10 - The following measurements of x and y have been...Ch. 15.10 - Given the measurements...Ch. 15.10 - Given the measurements...Ch. 15.11 - (a) Suppose you have two quarters and a dime in...Ch. 15.11 - (a) Suppose that Martian dice are regular...Ch. 15.11 - There are 3 red and 2 white balls in one box and 4...Ch. 15.11 - If 4 letters are put at random into 4 envelopes,...Ch. 15.11 - Two decks of cards are matched, that is, the order...Ch. 15.11 - Find the number of ways of putting 2 particles in...Ch. 15.11 - Suppose a coin is tossed three times. Let x be a...Ch. 15.11 - (a) A weighted coin has probability 23 of coming...Ch. 15.11 - One box contains one die and another box contains...Ch. 15.11 - Do Problems 10 to 12 using both the binomial...Ch. 15.11 - Do Problems 10 to 12 using both the binomial...Ch. 15.11 - Do Problems 10 to 12 using both the binomial...Ch. 15.11 - A radioactive source emits 1800 particles during...Ch. 15.11 - Suppose a 200-page book has, on the average, one...Ch. 15.11 - In Problems 15 and 16, find the binomial...Ch. 15.11 - In Problems 15 and 16, find the binomial...Ch. 15.11 - Given the measurements...Ch. 15.11 - Given the measurements...
Knowledge Booster
Similar questions
- 1) Compute the inverse of the following matrix. 0 1 1 A = 5 1 -1 2-3 -3arrow_forwardQuestion 3 (5pt): A chemical reaction. In an elementary chemical reaction, single molecules of two reactants A and B form a molecule of the product C : ABC. The law of mass action states that the rate of reaction is proportional to the product of the concentrations of A and B: d[C] dt = k[A][B] (where k is a constant positive number). Thus, if the initial concentrations are [A] = = a moles/L and [B] = b moles/L we write x = [C], then we have (E): dx dt = k(ax)(b-x) 1 (a) Write the differential equation (E) with separate variables, i.e. of the form f(x)dx = g(t)dt. (b) Assume first that a b. Show that 1 1 1 1 = (a - x) (b - x) - a) a - x b - x b) (c) Find an antiderivative for the function f(x) = (a-x) (b-x) using the previous question. (d) Solve the differentiel equation (E), i.e. find x as a function of t. Use the fact that the initial concentration of C is 0. (e) Now assume that a = b. Find x(t) assuming that a = b. How does this expression for x(t) simplify if it is known that [C] =…arrow_forward2) Consider the matrix M = [1 2 3 4 5 0 2 3 4 5 00345 0 0 0 4 5 0 0 0 0 5 Determine whether the following statements are True or False. A) M is invertible. B) If R5 and Mx = x, then x = 0. C) The last row of M² is [0 0 0 0 25]. D) M can be transformed into the 5 × 5 identity matrix by a sequence of elementary row operations. E) det (M) 120 =arrow_forward
- 3) Find an equation of the plane containing (0,0,0) and perpendicular to the line of intersection of the planes x + y + z = 3 and x y + z = 5. -arrow_forward3) Find the volume of the solid that lies inside both the sphere x² + y² + z² cylinder x²+y² = 1. = 4 and thearrow_forward1) In the xy-plane, what type of conic section is given by the equation - √√√(x − 1)² + (y − 1)² + √√√(x + 1)² + (y + 1)² : - = 3?arrow_forward
- 1) Compute the following limit. lim x-0 2 cos(x) 2x² - x4arrow_forward3) Let V be the vector space of all functions f: RR. Prove that each W below is a subspace of V. A) W={f|f(1) = 0} B) W = {f|f(1) = ƒ(3)} C) W={ff(x) = − f(x)}arrow_forwardTranslate the angument into symbole from Then determine whether the argument is valid or Invalid. You may use a truth table of, it applicable compare the argument’s symbolic form to a standard valid or invalid form. pot out of bed. The morning I did not get out of bed This moring Mat woke up. (1) Cidt the icon to view tables of standard vald and braild forms of arguments. Let prepresent."The morning Must woke up "and let a represent “This morning I got out of bed.” Seled the cared choice below and II in the answer ber with the symbolic form of the argument (Type the terms of your expression in the same order as they appear in the original expression) A. The argument is valid In symbolic form the argument is $\square $ B. The angunent is braid In symbolic form the argument is $\square $arrow_forward
- Ms.sally has 12 studentsMr Franklin has twice as many students as Ms. Sally.how many students does Mr Franklin have?arrow_forwardexplainwhat is means for a shape to be symmetricarrow_forwardy = f(x) b C The graph of y = f(x) is shown in the figure above. On which of the following intervals are dy > 0 and dx d²y dx2 <0? I. aarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education