Path of steepest descent Consider each of the following surfaces and the point P on the surface. a. Find the gradient of f. b. Let C’ be the path of steepest descent on the surface beginning at P and let C be the projection of C’ on the xy-plane. Find an equation of C in the xy-plane. 51 f ( x , y ) = 4 + x ( a plane ) ; P ( 4 , 4 , 8 )
Path of steepest descent Consider each of the following surfaces and the point P on the surface. a. Find the gradient of f. b. Let C’ be the path of steepest descent on the surface beginning at P and let C be the projection of C’ on the xy-plane. Find an equation of C in the xy-plane. 51 f ( x , y ) = 4 + x ( a plane ) ; P ( 4 , 4 , 8 )
Solution Summary: The author explains how the gradient of f(x,y)=4+x is computed as follows.
Path of steepest descentConsider each of the following surfaces and the point P on the surface.
a.Find the gradient of f.
b.Let C’ be the path of steepest descent on the surface beginning at P and let C be the projection of C’ on the xy-plane. Find an equation of C in the xy-plane.
51
f
(
x
,
y
)
=
4
+
x
(
a plane
)
;
P
(
4
,
4
,
8
)
rmine the immediate settlement for points A and B shown in
figure below knowing that Aq,-200kN/m², E-20000kN/m², u=0.5, Depth
of foundation (DF-0), thickness of layer below footing (H)=20m.
4m
B
2m
2m
A
2m
+
2m
4m
sy = f(x)
+
+
+
+
+
+
+
+
+
X
3
4
5
7
8
9
The function of shown in the figure is continuous on the closed interval [0, 9] and differentiable on the open
interval (0, 9). Which of the following points satisfies conclusions of both the Intermediate Value Theorem
and the Mean Value Theorem for f on the closed interval [0, 9] ?
(A
A
B
B
C
D
=
Q6 What will be the allowable bearing capacity of sand having p = 37° and ydry
19 kN/m³ for (i) 1.5 m strip foundation (ii) 1.5 m x 1.5 m square footing and
(iii)1.5m x 2m rectangular footing. The footings are placed at a depth of 1.5 m
below ground level. Assume F, = 2.5. Use Terzaghi's equations.
0
Ne
Na
Ny
35 57.8 41.4 42.4
40 95.7 81.3 100.4
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.