
Chemistry
3rd Edition
ISBN: 9780073402734
Author: Julia Burdge
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Question
Chapter 15.5, Problem 3CP
Interpretation Introduction
Interpretation:
The equilibrium thatshifts to the left on increasing the temperature is to be determined.
Concept introduction:
The
LeChatelier’s principle is used to explain the effect of change of pressure, temperature, or concentration on the direction of equilibrium.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
The rate coefficient of the gas-phase reaction 2 NO2 + O3 → N2O5 + O2 is 2.0x104 mol–1 dm3 s–1 at 300 K. Indicate whether the order of the reaction is 0, 1, or 2.
8. Draw all the resonance forms for each of the following molecules or ions, and indicate the major
contributor in each case, or if they are equivalent. (4.5 pts)
(a)
PH2
سمة
3. Assign absolute configuration (Rors) to each chirality center.
a.
H
Nitz
C.
он
b.
0
H-C. C
H
7
C.
་-4
917-417
refs
H
1つ
८
ડુ
d.
Но
f.
-2-
01
Ho
-OH
2HN
Chapter 15 Solutions
Chemistry
Ch. 15.1 - Practice Problem ATTEMPT
In an analysis of the...Ch. 15.1 - Prob. 1PPBCh. 15.1 - Practice Problem CONCEPTUALIZE
Consider the...Ch. 15.2 - Practice ProblemATTEMPT Write the reaction...Ch. 15.2 - Practice Problem BUILD
Write the equation for the...Ch. 15.2 - Practice ProblemCONCEPTUALIZE In principle, in the...Ch. 15.2 - Select the correct equilibrium expression for the...Ch. 15.2 - Prob. 2CPCh. 15.3 - Practice Problem ATTEMPT Write equilibrium...Ch. 15.3 - Practice Problem BUILD
Which of the following...
Ch. 15.3 - Prob. 1PPCCh. 15.3 - Prob. 1CPCh. 15.3 - Prob. 2CPCh. 15.3 - Given the following information: HF ( a q ) ⇄ H +...Ch. 15.3 - Prob. 4CPCh. 15.4 - Practice ProblemATTEMPT The following reactions...Ch. 15.4 - Practice Problem BUILD
The equation represents a...Ch. 15.4 - Practice ProblemCONCEPTUALIZE Consider a chemical...Ch. 15.4 - Use the following information to answer questions...Ch. 15.4 - Prob. 2CPCh. 15.4 - 15.4.3 If for the reaction at a certain...Ch. 15.4 - If K c = 3 for the reaction X + 2Y ⇄ Z at a...Ch. 15.5 - Practice ProblemATTEMPT Write K? expressions for (...Ch. 15.5 - Prob. 1PPBCh. 15.5 - Prob. 1PPCCh. 15.5 - Prob. 1CPCh. 15.5 - Prob. 2CPCh. 15.5 - Prob. 3CPCh. 15.5 - Prob. 4CPCh. 15.5 - Prob. 5CPCh. 15.5 - Prob. 6CPCh. 15.6 - Practice Problem ATTEMPT
For the reaction:
....Ch. 15.6 - Practice ProblemBUILD K p = 2.79 × 10 − 5 for the...Ch. 15.6 - Practice Problem CONCEPTUALIZE
Consider the...Ch. 15.7 - Prob. 1PPACh. 15.7 - Prob. 1PPBCh. 15.7 - Prob. 1PPCCh. 15.8 - Practice ProblemATTEMPT Calculate the equilibrium...Ch. 15.8 - Practice ProblemBUILD Determine the initial...Ch. 15.8 - Practice Problem CONCEPTUALIZE
Consider the...Ch. 15.9 - Prob. 1PPACh. 15.9 - Prob. 1PPBCh. 15.9 - Prob. 1PPCCh. 15.10 - Practice ProblemATTEMPT Aqueous hydrocyanic acid...Ch. 15.10 - Practice Problem BUILD Consider a weak acid, HA,...Ch. 15.10 - Practice ProblemCONCEPTUALIZE Each of the...Ch. 15.11 - Practice Problem ATTEMPT Determine the equilibrium...Ch. 15.11 - Prob. 1PPBCh. 15.11 - Prob. 1PPCCh. 15.12 - Practice ProblemATTEMPT For each change indicated,...Ch. 15.12 - Prob. 1PPBCh. 15.12 - Practice ProblemCONCEPTUALIZE Consider the...Ch. 15.13 - Practice Problem ATTEMPT
For each reaction,...Ch. 15.13 - Practice Problem BUILD
For the following...Ch. 15.13 - Practice Problem CONCEPTUALIZE
Consider the...Ch. 15.14 - Practice Problem ATTEMPT
The reaction of carbon...Ch. 15.14 - Practice Problem BUILD
Consider the hypothetical...Ch. 15.14 - Practice Problem CONCEPTUALIZE
The decomposition...Ch. 15 - The K a for hydrocyanic acid ( HCN ) is 4 .9 × 10...Ch. 15 - 15.2
Determine the concentrations of in a...Ch. 15 - 15.3
Determine the for a weak acid if a 0.10-M...Ch. 15 - Prob. 4KSPCh. 15 - Define equilibrium. Give two examples of a dynamic...Ch. 15 - 15.2 Which of the following statements is correct...Ch. 15 - 15.3 Consider the reversible reaction Explain how...Ch. 15 - What is the law of mass action?Ch. 15 - Briefly describe the importance of equilibrium in...Ch. 15 - Define reaction quotient. How does it differ from...Ch. 15 - Write reaction quotients for the following...Ch. 15 - Write the equation for the reaction that...Ch. 15 - Consider the reaction: 2NO ( g ) + 2H 2 ( g ) ⇄ N...Ch. 15 - The equilibrium constant for the reaction: 2SO 2 (...Ch. 15 - Consider the following equilibrium process at...Ch. 15 - The equilibrium constant for the reaction: 2 H 2 (...Ch. 15 - The first diagram represents a system at...Ch. 15 - Prob. 14QPCh. 15 - Define homogeneous equilibrium and heterogeneous...Ch. 15 - What do the symbols K c and K p represent?Ch. 15 - Write the expressions for the equilibrium...Ch. 15 - Write equilibrium constant expressions for K c ,...Ch. 15 - Write the equilibrium constant expressions for K c...Ch. 15 - 15.20 Write the equation relating to , and define...Ch. 15 - 15.21 The equilibrium constant () for the...Ch. 15 - What is K p at 1273°C for the reaction 2CO ( g ) +...Ch. 15 - 15.23 The equilibrium constant for the...Ch. 15 - 15.24 Consider the reaction:
If the equilibrium...Ch. 15 - 15.25 A reaction vessel contains at equilibrium...Ch. 15 - 15.26 The equilibrium constant Kc for the...Ch. 15 - At equilibrium, the pressure of the reacting...Ch. 15 - The equilibrium constant K p for the reaction: PCl...Ch. 15 - Ammonium carbamate ( NH 4 CO 2 NH 2 ) decomposes...Ch. 15 - The following equilibrium constants were...Ch. 15 - 15.31 At a certain temperature, the following...Ch. 15 - 15.32 Pure phosgene gas , was placed in a 1.50-L...Ch. 15 - Consider the equilibrium: 2 NOBr( g ) ⇄ 2 NO( g...Ch. 15 - The following equilibrium constants have been...Ch. 15 - 15.35 The following equilibrium constants have...Ch. 15 - 15.36 The equilibrium constant for the reaction at...Ch. 15 - The following diagrams represent the equilibrium...Ch. 15 - 15.38 Outline the steps for calculating the...Ch. 15 - 15.39 The equilibrium constant K? for the...Ch. 15 - 15.40 For the synthesis of ammonia:
the...Ch. 15 - For the reaction: H 2 ( g ) + CO 2 ( g ) ⇄ H 2 O (...Ch. 15 - At 1000 K, a sample of pure NO, gas decomposes:...Ch. 15 - The equilibrium constant K c for the reaction H 2...Ch. 15 - The dissociation of molecular iodine into iodine...Ch. 15 - The equilibrium constant Kc for the decomposition...Ch. 15 - 15.46 Consider the following equilibrium process...Ch. 15 - 15.47 Consider the heterogeneous equilibrium...Ch. 15 - The equilibrium constant K c for the reaction: H 2...Ch. 15 - The aqueous reaction: L-glutamate + pyruvate ⇄...Ch. 15 - 15.50 Explain Le Châtelier’s principle. How does...Ch. 15 - Use Le Chatelier's principle to explain why the...Ch. 15 - 15.52 List four factors that can shift the...Ch. 15 - Does the addition of a catalyst have any effects...Ch. 15 - 15.54 Consider the following equilibrium system...Ch. 15 - 15.55 Heating solid sodium bicarbonate in a closed...Ch. 15 - 15.56 Consider the following equilibrium...Ch. 15 - 15.57 What effect does an increase in pressure...Ch. 15 - Prob. 58QPCh. 15 - Consider the following equilibrium process: PCl 5...Ch. 15 - Consider the reaction: 2SO 2 ( g ) ⇄ 2 SO 3 ( g )...Ch. 15 - In the uncatalyzed reaction: N 2 O 4 ( g ) ⇄ 2 NO...Ch. 15 - 15.62 Consider the gas-phase reaction:
Predict...Ch. 15 - Consider the following equilibrium reaction in a...Ch. 15 - 15.64 The following diagrams show the reaction at...Ch. 15 - 15.65 The following diagrams show an equilibrium...Ch. 15 - 15.66 Consider the reaction . The first diagram...Ch. 15 - Prob. 67APCh. 15 - Consider the equilibrium system 3A → B . Sketch...Ch. 15 - Baking soda (sodium bicarbonate) undergoes thermal...Ch. 15 - Consider the following reaction at equilibrium: A...Ch. 15 - Prob. 71APCh. 15 - 15.72 Consider the following reacting...Ch. 15 - 15.73 At a certain temperature and a total...Ch. 15 - The decomposition of ammonium hydrogen sulfide: N...Ch. 15 - 15.75 Consider the following reaction at a certain...Ch. 15 - When heated, ammonium carbamate decomposes as...Ch. 15 - A mixture of 0 .47 mole of H2 and 3 .59 moles of...Ch. 15 - When heated at high temperatures, iodine vapor...Ch. 15 - 15.79 One mole of and three moles of are placed...Ch. 15 - At 1130°C , the equilibrium constant ( K c ) for...Ch. 15 - For the purpose of determining K p using Equation...Ch. 15 - The following diagram represents a gas-phase...Ch. 15 - 15.83 Consider the following reaction at
When...Ch. 15 - 15.84 A quantity of 0.20 mole of carbon dioxide...Ch. 15 - 15.85 When dissolved in water, glucose (com sugar)...Ch. 15 - 15 86 At room temperature, solid iodine is in...Ch. 15 - 15.87 A student placed a few ice cubes in a...Ch. 15 - 15.88 A mixture containing 3.9 moles of and 0.88...Ch. 15 - 15.89 The equilibrium constant for the...Ch. 15 - When heated, a gaseous compound A dissociates as...Ch. 15 - 15.91 When a gas was heated under atmospheric...Ch. 15 - Prob. 92APCh. 15 - A sealed glass bulb contains a mixture of NO 2 and...Ch. 15 - At 20°C , the vapor pressure of water is 0.0231...Ch. 15 - A 2.50-mol sample of NOCl was initially in a...Ch. 15 - 15.96 About 75 percent of hydrogen for industrial...Ch. 15 - Water is a very weak electrolyte that undergoes...Ch. 15 - 15.98 Consider the following reaction, which takes...Ch. 15 - The equilibrium constant Kc for the reaction: 2NH...Ch. 15 - At 25°C, a mixture of NO 2 and N 2 O 4 gases are...Ch. 15 - 15.101 Consider the reaction between and in a...Ch. 15 - In 1899 the German chemist Ludwig Mond developed a...Ch. 15 - For which of the following reactions is K c equal...Ch. 15 - The equilibrium constant K p for the following...Ch. 15 - At 1024°C, , the pressure of oxygen gas from the...Ch. 15 - 15.06 The equilibrium constant for the following...Ch. 15 - 15.107 Industrially, sodium metal is obtained by...Ch. 15 - Consider the equilibrium reaction described in...Ch. 15 - The K p for the reaction: SO 2 Cl 2 ( g ) ⇄ SO 2 (...Ch. 15 - The "boat" form and the “chair" form of...Ch. 15 - A quantity of 6.75 g of SO 2 Cl 2 was placed in a...Ch. 15 - 15.112 Industrial production of ammonia from...Ch. 15 - 15.113 The equilibrium constant for the formation...Ch. 15 - Consider the reaction: 2NO( g )+ O 2 ( g ) ⇄ 2N O...Ch. 15 - The formation of SO 3 from SO 2 and O 2 is an...Ch. 15 - At 25°C , the equilibrium partial pressures of N O...Ch. 15 - 15.117 The vapor pressure of mercury is 0.0020...Ch. 15 - 15.118 Both ' and are important biological ions....Ch. 15 - Photosynthesis can be represented by: 6C O 2 ( g...Ch. 15 - Consider the decomposition of ammonium chloride at...Ch. 15 - 15.121 Eggshells are composed mostly of calcium...Ch. 15 - In the gas phase, nitrogen dioxide is actually a...Ch. 15 - Consider the potential-energy diagrams for two...Ch. 15 - Iodine is sparingly soluble in water but much more...Ch. 15 - The dependence of the equilibrium constant of a...Ch. 15 - Lime ( CaO ) is used to prevent SO 2 from escaping...Ch. 15 - Lime is used to prevent from escaping from the...Ch. 15 - Lime ( CaO ) is used to prevent SO 2 from escaping...Ch. 15 - Lime ( CaO ) is used to prevent SO 2 from escaping...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- How many signals do you expect in the H NMR spectrum for this molecule? Br Br Write the answer below. Also, in each of the drawing areas below is a copy of the molecule, with Hs shown. In each copy, one of the H atoms is colored red. Highlight in red all other H atoms that would contribute to the same signal as the H already highlighted red. Note for advanced students: In this question, any multiplet is counted as one signal. Number of signals in the 'H NMR spectrum. For the molecule in the top drawing area, highlight in red any other H atoms that will contribute to the same signal as the H atom already highlighted red. If no other H atoms will contribute, check the box at right. No additional Hs to color in top molecule For the molecule in the bottom drawing area, highlight in red any other H atoms that will contribute to the same signal as the H atom already highlighted red. If no other H atoms will contribute, check the box at right. No additional Hs to color in bottom moleculearrow_forwardIn the drawing area below, draw the major products of this organic reaction: 1. NaOH ? 2. CH3Br If there are no major products, because nothing much will happen to the reactant under these reaction conditions, check the box under the drawing area instead. No reaction. Click and drag to start drawing a structure. ☐ : A คarrow_forwardPredict the major products of the following organic reaction: NC Δ ? Some important Notes: • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. • Be sure to draw bonds carefully to show important geometric relationships between substituents. Note: if your answer contains a complicated ring structure, you must use one of the molecular fragment stamps (available in the menu at right) to enter the ring structure. You can add any substituents using the pencil tool in the usual way. Click and drag to start drawing a structure. Х аarrow_forward
- Predict the major products of this organic reaction. Be sure you use dash and wedge bonds to show stereochemistry where it's important. + ☑ OH 1. TsCl, py .... 文 P 2. t-BuO K Click and drag to start drawing a structure.arrow_forwardConsider this organic reaction: ( Draw the major products of the reaction in the drawing area below. If there won't be any major products, because this reaction won't happen at a significant rate, check the box under the drawing area instead. Click and drag to start drawing a structure. Х : а ค 1arrow_forwardIn the drawing area below, draw the major products of this organic reaction: If there are no major products, because nothing much will happen to the reactant under these reaction conditions, check the box under the drawing area instead. 1. NaH 2. CH3Br ? Click and drag to start drawing a structure. No reaction. : ☐ Narrow_forward
- + Predict the major product of the following reaction. : ☐ + ☑ ค OH H₂SO4 Click and drag to start drawing a structure.arrow_forwardConsider this organic reaction: ... OH CI Draw the major products of the reaction in the drawing area below. If there won't be any major products, because this reaction won't happen at a significant rate, check the box under the drawing area instead. ☐ No Reaction. Click and drag to start drawing a structure. : аarrow_forwardConsider the following reactants: Br Would elimination take place at a significant rate between these reactants? Note for advanced students: by significant, we mean that the rate of elimination would be greater than the rate of competing substitution reactions. yes O no If you said elimination would take place, draw the major products in the upper drawing area. If you said elimination would take place, also draw the complete mechanism for one of the major products in the lower drawing area. If there is more than one major product, you may draw the mechanism that leads to any of them. Major Products:arrow_forward
- Draw one product of an elimination reaction between the molecules below. Note: There may be several correct answers. You only need to draw one of them. You do not need to draw any of the side products of the reaction. OH + ! : ☐ + Х Click and drag to start drawing a structure.arrow_forwardFind one pertinent analytical procedure for each of following questions relating to food safety analysis. Question 1: The presence of lead, mercury and cadmium in canned tuna Question 2: Correct use of food labellingarrow_forwardFormulate TWO key questions that are are specifically in relation to food safety. In addition to this, convert these questions into a requirement for chemical analysis.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax

Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning

Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning

Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY