Chemistry
Chemistry
3rd Edition
ISBN: 9780073402734
Author: Julia Burdge
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Videos

Textbook Question
Book Icon
Chapter 15, Problem 96AP

About 75 percent of hydrogen for industrial use is produced by the steam-reforming process. This process is carried out in two stages called primary and secondary reforming. In the primary stage, a mixture of steam and methane at about 30 atm is heated over a nickel catalyst at 800°C to give hydrogen and carbon monoxide:

CH 4 ( g )  H 2 O ( g )  CO ( g )  + 3H 2 ( g )    Δ H °  = 206 kJ/mol

The secondary stage is carried out at about 1000°C . in the presence of air. to convert the remaining methane to hydrogen:

CH4( g )+ 1 2 O 2 ( g ) CO( g )+2H 2 ( g )  Δ H ° =35 .7 kJ/mol

(a) What conditions of temperature and pressure would favor the formation of products in both the primary and secondany stages? (b) The equilibrium constant Kc for the primary stage is 18 at 800°C . (i) Calculate K p for the reaction. (ii) If the partial pressures of methane and steam were both 15 atm at the start, what are the pressures of all the gases at equilibrium?

Expert Solution & Answer
Check Mark
Interpretation Introduction

Interpretation:

The favorable conditions for the formation of products, the partial pressure constant of thereaction, and the pressures of all the gases at equilibrium are to be determined.

Concept introduction:

When the enthalpy of a reaction is less than zero, it is called an exothermic reaction (enthalpy is negative), and when it is more than zero, it is an endothermic reaction (enthalpy is positive).

Equilibrium constant is the ratio of the concentration of reactants and products present in the chemical reaction.

For a general reaction: aA+bBcC+dD

The general formula for writing equilibrium expression for the reaction is given as:

KC=[C]ceqm[D]deqm[A]aeqm[B]beqm

Here, KC is the equilibrium constant and C in KC stands for the concentration. [A], [B], [C], and [D] are the equilibrium concentration of reactants A and B and product C and D, respectively.

A and B are reactants, C is products, and x,y, and z are their respective stoichiometric coefficients.

For the general reaction: aA+bBcC+dD

The general formula for writing equilibrium expression for the reaction is given as:

Kp=PCcPDdPAaPBb

Here, p in Kp stands for the pressure. PA,PB,PC,andPD are the equilibrium partial pressure of reactants A and B and products C and D.

A and B are reactants, C and D are products, and a,b,c, and d are their respective stoichiometric coefficients.

Equilibrium constants of gas phase reaction are written in terms of partial pressures because concentration of gases is directly proportional to partial pressures.

The relationship between KP and KC is given as:

KP=KC(RT)ΔnKc=KP(RT)Δn

Answer to Problem 96AP

Solution:

(a)

A high temperature favors product formation.

(b)

i) 1.4×105

ii) PCH4=2atmPH2O=2atmPCO=13atmPH2=39atm

Explanation of Solution

Given information:

The temperature at the first stage is 800C.

The temperature at thesecond stage is 1000C.

ΔH=2.6 kJ/mol

ΔH=35.7 kJ/mol

a)The conditions of temperature and pressure that would favor that formation of products both in primary and secondary stage.

The optimum condition for pressure is 200500 atmospheres.

Standard conditions for pressure in air is,

1 atm=760 mmHg.

At a temperature of 25C, the pressure is 101.325 kPa.

1Pa=106N/mm2=105bar

Based on the given reactions, the enthalpy is positive. So, the forward reaction is an endothermic reaction. According to LeChatelier’s principle, at high temperatures, more products are formed. In the steam-reforming process, alow temperature is favored, according to Le Chatelier’s principle.

An interesting fact to note is that the plants use natural gases, such as methane, for heating and generating hydrogen. To maintain the high temperatures, one-third of the methane gas is burned.

The first stage of the reaction is as follows:

CH4(g)+H2O(g)CO(g)+3H2(g)ΔH=206 kJ/mol

The second stage of the reaction is as follows:

CH4(g)+12O2(g)CO(g)+3H2(g)ΔH=35.7 kJ/mol

In both the primary and the secondary reaction, a high temperature is favorable for product formation because both are endothermic reactions.

The sum of the number of moles of the product is more than that of the reactants in both the reactions. So, a decrease in pressure favors the forward reaction to form more products.

b)The equilibrium constant is 18.

i) Kp for the reaction

The value of Kp for the reaction is as follows:

The relation between Kp and Kc is:

Kp=Kc(RT)Δn

Here, Kp is the equilibrium constant in terms of pressure, Kc is the equilibrium constant, R is the gas constant, T is the temperature, and Δn is the difference between the number of moles of the reactants and the products.

The number of moles of the reaction is calculated as follows:

Δn=the sum of number of moles of gaseous productsthe sum of number of moles of gaseous reactants=42=2

Substitute the values of Kc, R, T, and Δn in the above equation,

Kp=18(0.0821×1073)2=18(7760.429)=139687.74=1.4×105

The value of Kp for the reaction is 1.4×105.

ii) The pressure of all gases at equilibrium

The partial pressures of methane and steam start at 15atm. The pressures of all the gases at equilibrium is as follows:

The initial change equilibrium table for thereaction is as follows:

CH4H2OCO3H2Initial(atm)151500Change(atm)xx+x+xEquilibrium(atm)15x15xx3x

The equilibrium constant is:

Kp=PCcPDdPAaPBb

Kp=PCOPH23PCH4PH2O

Here, Kp is the equilibrium constant in terms ofpressure, PCO is the partial pressure of CO, PH23 is the partial pressure of H2, PCH4 is the partial pressure of CH4, and PH2O is the partial pressure of H2O.

Substitute the value of Kp to calculate the value of x,

1.4×105=(x)(3x)3(15x)2=27x4(15x)2

Take the square root on both sides,

3.7×102=5.2x2(15x)5.2x2+(3.7×102x)(5.6×103)=0x1=13x2=0.61

From the quadratic expression, x2 is negative. So, x1=13 is possible.

The partial pressure of CH4 at equilibrium is as follows:

PCH4=(1513)=2atm

The partial pressure of H2O at equilibrium is as follows:

PH2O=(1513)=2atm

The partial pressure of CO at equilibrium is as follows:

PCO=13atm

The partial pressure of H2 at equilibrium is as follows:

PH2=3(13)=39atm

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 15 Solutions

Chemistry

Ch. 15.3 - Prob. 1PPCCh. 15.3 - Prob. 1CPCh. 15.3 - Prob. 2CPCh. 15.3 - Given the following information: HF ( a q ) ⇄ H +...Ch. 15.3 - Prob. 4CPCh. 15.4 - Practice ProblemATTEMPT The following reactions...Ch. 15.4 - Practice Problem BUILD The equation represents a...Ch. 15.4 - Practice ProblemCONCEPTUALIZE Consider a chemical...Ch. 15.4 - Use the following information to answer questions...Ch. 15.4 - Prob. 2CPCh. 15.4 - 15.4.3 If for the reaction at a certain...Ch. 15.4 - If K c = 3 for the reaction X + 2Y ⇄ Z at a...Ch. 15.5 - Practice ProblemATTEMPT Write K? expressions for (...Ch. 15.5 - Prob. 1PPBCh. 15.5 - Prob. 1PPCCh. 15.5 - Prob. 1CPCh. 15.5 - Prob. 2CPCh. 15.5 - Prob. 3CPCh. 15.5 - Prob. 4CPCh. 15.5 - Prob. 5CPCh. 15.5 - Prob. 6CPCh. 15.6 - Practice Problem ATTEMPT For the reaction: ....Ch. 15.6 - Practice ProblemBUILD K p = 2.79 × 10 − 5 for the...Ch. 15.6 - Practice Problem CONCEPTUALIZE Consider the...Ch. 15.7 - Prob. 1PPACh. 15.7 - Prob. 1PPBCh. 15.7 - Prob. 1PPCCh. 15.8 - Practice ProblemATTEMPT Calculate the equilibrium...Ch. 15.8 - Practice ProblemBUILD Determine the initial...Ch. 15.8 - Practice Problem CONCEPTUALIZE Consider the...Ch. 15.9 - Prob. 1PPACh. 15.9 - Prob. 1PPBCh. 15.9 - Prob. 1PPCCh. 15.10 - Practice ProblemATTEMPT Aqueous hydrocyanic acid...Ch. 15.10 - Practice Problem BUILD Consider a weak acid, HA,...Ch. 15.10 - Practice ProblemCONCEPTUALIZE Each of the...Ch. 15.11 - Practice Problem ATTEMPT Determine the equilibrium...Ch. 15.11 - Prob. 1PPBCh. 15.11 - Prob. 1PPCCh. 15.12 - Practice ProblemATTEMPT For each change indicated,...Ch. 15.12 - Prob. 1PPBCh. 15.12 - Practice ProblemCONCEPTUALIZE Consider the...Ch. 15.13 - Practice Problem ATTEMPT For each reaction,...Ch. 15.13 - Practice Problem BUILD For the following...Ch. 15.13 - Practice Problem CONCEPTUALIZE Consider the...Ch. 15.14 - Practice Problem ATTEMPT The reaction of carbon...Ch. 15.14 - Practice Problem BUILD Consider the hypothetical...Ch. 15.14 - Practice Problem CONCEPTUALIZE The decomposition...Ch. 15 - The K a for hydrocyanic acid ( HCN ) is 4 .9 × 10...Ch. 15 - 15.2 Determine the concentrations of in a...Ch. 15 - 15.3 Determine the for a weak acid if a 0.10-M...Ch. 15 - Prob. 4KSPCh. 15 - Define equilibrium. Give two examples of a dynamic...Ch. 15 - 15.2 Which of the following statements is correct...Ch. 15 - 15.3 Consider the reversible reaction Explain how...Ch. 15 - What is the law of mass action?Ch. 15 - Briefly describe the importance of equilibrium in...Ch. 15 - Define reaction quotient. How does it differ from...Ch. 15 - Write reaction quotients for the following...Ch. 15 - Write the equation for the reaction that...Ch. 15 - Consider the reaction: 2NO ( g ) + 2H 2 ( g ) ⇄ N...Ch. 15 - The equilibrium constant for the reaction: 2SO 2 (...Ch. 15 - Consider the following equilibrium process at...Ch. 15 - The equilibrium constant for the reaction: 2 H 2 (...Ch. 15 - The first diagram represents a system at...Ch. 15 - Prob. 14QPCh. 15 - Define homogeneous equilibrium and heterogeneous...Ch. 15 - What do the symbols K c and K p represent?Ch. 15 - Write the expressions for the equilibrium...Ch. 15 - Write equilibrium constant expressions for K c ,...Ch. 15 - Write the equilibrium constant expressions for K c...Ch. 15 - 15.20 Write the equation relating to , and define...Ch. 15 - 15.21 The equilibrium constant () for the...Ch. 15 - What is K p at 1273°C for the reaction 2CO ( g ) +...Ch. 15 - 15.23 The equilibrium constant for the...Ch. 15 - 15.24 Consider the reaction: If the equilibrium...Ch. 15 - 15.25 A reaction vessel contains at equilibrium...Ch. 15 - 15.26 The equilibrium constant Kc for the...Ch. 15 - At equilibrium, the pressure of the reacting...Ch. 15 - The equilibrium constant K p for the reaction: PCl...Ch. 15 - Ammonium carbamate ( NH 4 CO 2 NH 2 ) decomposes...Ch. 15 - The following equilibrium constants were...Ch. 15 - 15.31 At a certain temperature, the following...Ch. 15 - 15.32 Pure phosgene gas , was placed in a 1.50-L...Ch. 15 - Consider the equilibrium: 2 NOBr( g ) ⇄ 2 NO( g...Ch. 15 - The following equilibrium constants have been...Ch. 15 - 15.35 The following equilibrium constants have...Ch. 15 - 15.36 The equilibrium constant for the reaction at...Ch. 15 - The following diagrams represent the equilibrium...Ch. 15 - 15.38 Outline the steps for calculating the...Ch. 15 - 15.39 The equilibrium constant K? for the...Ch. 15 - 15.40 For the synthesis of ammonia: the...Ch. 15 - For the reaction: H 2 ( g ) + CO 2 ( g ) ⇄ H 2 O (...Ch. 15 - At 1000 K, a sample of pure NO, gas decomposes:...Ch. 15 - The equilibrium constant K c for the reaction H 2...Ch. 15 - The dissociation of molecular iodine into iodine...Ch. 15 - The equilibrium constant Kc for the decomposition...Ch. 15 - 15.46 Consider the following equilibrium process...Ch. 15 - 15.47 Consider the heterogeneous equilibrium...Ch. 15 - The equilibrium constant K c for the reaction: H 2...Ch. 15 - The aqueous reaction: L-glutamate + pyruvate ⇄...Ch. 15 - 15.50 Explain Le Châtelier’s principle. How does...Ch. 15 - Use Le Chatelier's principle to explain why the...Ch. 15 - 15.52 List four factors that can shift the...Ch. 15 - Does the addition of a catalyst have any effects...Ch. 15 - 15.54 Consider the following equilibrium system...Ch. 15 - 15.55 Heating solid sodium bicarbonate in a closed...Ch. 15 - 15.56 Consider the following equilibrium...Ch. 15 - 15.57 What effect does an increase in pressure...Ch. 15 - Prob. 58QPCh. 15 - Consider the following equilibrium process: PCl 5...Ch. 15 - Consider the reaction: 2SO 2 ( g ) ⇄ 2 SO 3 ( g )...Ch. 15 - In the uncatalyzed reaction: N 2 O 4 ( g ) ⇄ 2 NO...Ch. 15 - 15.62 Consider the gas-phase reaction: Predict...Ch. 15 - Consider the following equilibrium reaction in a...Ch. 15 - 15.64 The following diagrams show the reaction at...Ch. 15 - 15.65 The following diagrams show an equilibrium...Ch. 15 - 15.66 Consider the reaction . The first diagram...Ch. 15 - Prob. 67APCh. 15 - Consider the equilibrium system 3A → B . Sketch...Ch. 15 - Baking soda (sodium bicarbonate) undergoes thermal...Ch. 15 - Consider the following reaction at equilibrium: A...Ch. 15 - Prob. 71APCh. 15 - 15.72 Consider the following reacting...Ch. 15 - 15.73 At a certain temperature and a total...Ch. 15 - The decomposition of ammonium hydrogen sulfide: N...Ch. 15 - 15.75 Consider the following reaction at a certain...Ch. 15 - When heated, ammonium carbamate decomposes as...Ch. 15 - A mixture of 0 .47 mole of H2 and 3 .59 moles of...Ch. 15 - When heated at high temperatures, iodine vapor...Ch. 15 - 15.79 One mole of and three moles of are placed...Ch. 15 - At 1130°C , the equilibrium constant ( K c ) for...Ch. 15 - For the purpose of determining K p using Equation...Ch. 15 - The following diagram represents a gas-phase...Ch. 15 - 15.83 Consider the following reaction at When...Ch. 15 - 15.84 A quantity of 0.20 mole of carbon dioxide...Ch. 15 - 15.85 When dissolved in water, glucose (com sugar)...Ch. 15 - 15 86 At room temperature, solid iodine is in...Ch. 15 - 15.87 A student placed a few ice cubes in a...Ch. 15 - 15.88 A mixture containing 3.9 moles of and 0.88...Ch. 15 - 15.89 The equilibrium constant for the...Ch. 15 - When heated, a gaseous compound A dissociates as...Ch. 15 - 15.91 When a gas was heated under atmospheric...Ch. 15 - Prob. 92APCh. 15 - A sealed glass bulb contains a mixture of NO 2 and...Ch. 15 - At 20°C , the vapor pressure of water is 0.0231...Ch. 15 - A 2.50-mol sample of NOCl was initially in a...Ch. 15 - 15.96 About 75 percent of hydrogen for industrial...Ch. 15 - Water is a very weak electrolyte that undergoes...Ch. 15 - 15.98 Consider the following reaction, which takes...Ch. 15 - The equilibrium constant Kc for the reaction: 2NH...Ch. 15 - At 25°C, a mixture of NO 2 and N 2 O 4 gases are...Ch. 15 - 15.101 Consider the reaction between and in a...Ch. 15 - In 1899 the German chemist Ludwig Mond developed a...Ch. 15 - For which of the following reactions is K c equal...Ch. 15 - The equilibrium constant K p for the following...Ch. 15 - At 1024°C, , the pressure of oxygen gas from the...Ch. 15 - 15.06 The equilibrium constant for the following...Ch. 15 - 15.107 Industrially, sodium metal is obtained by...Ch. 15 - Consider the equilibrium reaction described in...Ch. 15 - The K p for the reaction: SO 2 Cl 2 ( g ) ⇄ SO 2 (...Ch. 15 - The "boat" form and the “chair" form of...Ch. 15 - A quantity of 6.75 g of SO 2 Cl 2 was placed in a...Ch. 15 - 15.112 Industrial production of ammonia from...Ch. 15 - 15.113 The equilibrium constant for the formation...Ch. 15 - Consider the reaction: 2NO( g )+ O 2 ( g ) ⇄ 2N O...Ch. 15 - The formation of SO 3 from SO 2 and O 2 is an...Ch. 15 - At 25°C , the equilibrium partial pressures of N O...Ch. 15 - 15.117 The vapor pressure of mercury is 0.0020...Ch. 15 - 15.118 Both ' and are important biological ions....Ch. 15 - Photosynthesis can be represented by: 6C O 2 ( g...Ch. 15 - Consider the decomposition of ammonium chloride at...Ch. 15 - 15.121 Eggshells are composed mostly of calcium...Ch. 15 - In the gas phase, nitrogen dioxide is actually a...Ch. 15 - Consider the potential-energy diagrams for two...Ch. 15 - Iodine is sparingly soluble in water but much more...Ch. 15 - The dependence of the equilibrium constant of a...Ch. 15 - Lime ( CaO ) is used to prevent SO 2 from escaping...Ch. 15 - Lime is used to prevent from escaping from the...Ch. 15 - Lime ( CaO ) is used to prevent SO 2 from escaping...Ch. 15 - Lime ( CaO ) is used to prevent SO 2 from escaping...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
Introductory Chemistry For Today
Chemistry
ISBN:9781285644561
Author:Seager
Publisher:Cengage
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY