
The dependence of the equilibrium constant of a reaction on temperature is given by the van't Hoff equation:
where C is a constant. The following table gives the equilibrium constant
KP |
138 |
5.12 |
0.436 |
0.0626 |
0.0130 |
TOO |
600 |
700 |
800 |
900 |
1000 |
(a) Determine graphically the
How does this equation support the prediction based on Le Châ�telier's principle about the shift in equilibrium with temperature? (c) The vapor pressures of water are 31.82 mmHg at

Interpretation:
The
Concept Introduction:
Achemical equilibrium is a state of the chemical reaction when the rate of forward reaction becomes equal to the rate of reverse reaction and the concentrations of the products and reactants become constant, which are known as equilibrium concentrations.
When energy is released in a reaction, the reaction is called exothermic, and the reactions in which energy is absorbed are endothermic reactions.
According to Le Chatelier’s Principle, when a system at equilibrium is subjected to any change, the system tries to undo the effect of that change by shifting its equilibrium in the desired direction.
The van't Hoff equation provides information about the temperature dependence of the equilibrium constant.
Answer to Problem 125AP
Solution:
(a)
(b)
According to Le Chatelier’s principles, increase in temperature favors the forward endothermic reaction, and decrease in temperature favors an exothermic reaction.
(c)
Explanation of Solution
a)The
The
The slope of the plot is
Here,
Substitute the values of
The
b)The following equation support the prediction based on Le-Chatelier’s principle about the shift in equilibrium with temperature
The vant Hoff’s equation at two different temperatures is
Here,
From (1) and (2):
An endothermic reaction has
Then, temperature is
In a reversible reaction at equilibrium, when the equilibrium constant is more, the products are also more or the rate constant of forward reaction is more, and hence the products are more. According to LeChatelier’s principle, an increase in temperature favors endothermic reaction, and a decrease in temperature favors exothermic reaction.
c) Molar heat of vaporization of water
The vapor pressure of water is
From vant’s Hoff equation,
Here,
Substitute the values of
On further solving
The molar heat ofvaporization of water is
Want to see more full solutions like this?
Chapter 15 Solutions
Chemistry
- (Please be sure that 7 carbons are available in the structure )Based on the 1H NMR, 13C NMR, DEPT 135 NMR and DEPT 90 NMR, provide a reasoning step and arrive at the final structure of an unknown organic compound containing 7 carbons. Dept 135 shows peak to be positive at 128.62 and 13.63 Dept 135 shows peak to be negative at 130.28, 64.32, 30.62 and 19.10.arrow_forward-lease help me answer the questions in the photo.arrow_forwardDefine electronegativity.arrow_forward
- Why do only the immediately adjacent H's show up in the number of peaks? Are there normally peaks for the H's that are 2-3 carbons away?arrow_forwardPlease help me understand this question. Thank you. Organic Chem 1arrow_forwardFor the reaction below, the concentrations at equilibrium are [SO₂] = 0.50 M, [0] = 0.45 M, and [SO3] = 1.7 M. What is the value of the equilibrium constant, K? 2SO2(g) + O2(g) 2SO3(g) Report your answer using two significant figures. Provide your answer below:arrow_forward
- scratch paper, and the integrated rate table provided in class. our scratch work for this test. Content attribution 3/40 FEEDBACK QUESTION 3 - 4 POINTS Complete the equation that relates the rate of consumption of H+ and the rate of formation of Br2 for the given reaction. 5Br (aq) + BrO3 (aq) + 6H (aq) →3Br2(aq) + 3H2O(l) • Your answers should be whole numbers or fractions without any decimal places. Provide your answer below: Search 尚 5 fn 40 * 00 99+ 2 9 144 a [arrow_forward(a) Write down the structure of EDTA molecule and show the complex structure with Pb2+ . (b) When do you need to perform back titration? (c) Ni2+ can be analyzed by a back titration using standard Zn2+ at pH 5.5 with xylenol orange indicator. A solution containing 25.00 mL of Ni2+ in dilute HCl is treated with 25.00 mL of 0.05283 M Na2EDTA. The solution is neutralized with NaOH, and the pH is adjusted to 5.5 with acetate buffer. The solution turns yellow when a few drops of indicator are added. Titration with 0.02299 M Zn2+ requires 17.61 mL to reach the red end point. What is the molarity of Ni2+ in the unknown?arrow_forwardA compound has the molecular formula CH40, and shows a strong IR absorption at 2850-3150 cm. The following signals appear in the 'H NMR spectrum: 1.4 ppm (triplet, 6H), 4.0 ppm (quartet, 4H), 6.8 ppm (broad singlet, 4H). Which of the following structures is consistent with these data? Select the single best answer. OCH CH₂ x OCH2CH3 CH₂OCH3 OH CH₂OCH OH CH, OCH₁ CH₂OCH, CH₂OCH HO OH ° CH₂OCH3arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxIntroductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning





