For the same reaction and temperature as in Worked Example 15.11, calculate the equilibrium concentrations of all three species if the starting concentrations are as follows: [H2] = 0.00623 M, [I2] = 0.00414 M, and [HI] = 0.0424 M.
![Check Mark](/static/check-mark.png)
Interpretation:
The HI equilibrium constant (Kc) values should be calculated given the respective molar concentration of reactants and products at
Concept Introduction:
Equilibrium constant (K): Concentration of the products to the respective molar concentration of reactants it is called equilibrium constant. If the K value is less than one the reaction will move to the left side and the K values is higher (or) greater than one the reaction will move to the right side of reaction.
Homogeneous equilibrium: A homogeneous equilibrium involved has an everything present in the same phase and same conditions, for example reactions where everything is a gas, or everything is present in the same solution.
Equilibrium concentration: If Kc and the initial concentration for a reaction and calculate for both equilibrium concentration, and using the (ICE) chart and equilibrium constant and derived changes in respective reactants and products.
Answer to Problem 15.12WE
The equilibrium concentration (Kc) value is given the hydrogen iodide chemical reaction is showed below.
Explanation of Solution
To find: Calculate the each
First we calculate the equilibrium table to determine the equilibrium concentrations of each species in terms of unknown (x) then solve for (x) and use it to calculate the equilibrium molar concentrations.
Let us consider the given equilibrium concentration values, to substitute (Kc) equation we get the equilibrium constant values.
The equilibrium concentration values are
The equal moles of H2 and I2 reacted in gas phase conditions to give 2 moles of HI, the balance equation are showed above. Then the depletion in the concentration of HI at equilibrium, the equilibrium concentration of H2 and I2 consider as (x), the calculation methods showed the table.
The HI molar concentration is derived given the equilibrium concentration (Kc) and its reaction.
Want to see more full solutions like this?
Chapter 15 Solutions
CHEMISTRY:ATOMS FIRST (LL)>CUSTOM PKG.<
- 2. 200 LOD For an unknown compound with a molecular ion of 101 m/z: a. Use the molecular ion to propose at least two molecular formulas. (show your work) b. What is the DU for each of your possible formulas? (show your work) C. Solve the structure and assign each of the following spectra. 8 6 4 2 (ppm) 150 100 50 ō (ppm) 4000 3000 2000 1500 1000 500 HAVENUMBERI-11arrow_forwardComplete the spectroscopy with structurearrow_forwardComplete the spectroscopy with structurearrow_forward
- Given the following concentrations for a system, calculate the value for the reaction quotient: Cl2(g)+ CS2(g) ⇌ CCl4(g)+ S2Cl2(g) Cl2 = 31.1 atm CS2 = 91.2 atm CCl4 = 2.12 atm S2Cl2 = 10.4 atmarrow_forwardMatch each chemical or item with the proper disposal or cleanup mwthod, Not all disposal and cleanup methods will be labeled. Metal sheets C, calcium, choroide solutions part A, damp metal pieces Part B, volumetric flask part A. a.Return to correct lables”drying out breaker. Place used items in the drawer.: Rinse with deionized water, dry as best you can, return to instructor. Return used material to the instructor.: Pour down the sink with planty of running water.: f.Pour into aqueous waste container. g.Places used items in garbage.arrow_forwardWrite the equilibrium constant expression for the following reaction: HNO2(aq) + H2O(l) ⇌ H3O+(aq) + NO2-(aq)arrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133958437/9781133958437_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337398909/9781337398909_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399425/9781337399425_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133109655/9781133109655_smallCoverImage.jpg)