Concept explainers
Use Green’s Theorem to find the work done by the force field F on a particle that moves along the stated path.
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
CALCULUS EARLY TRANSCENDENTALS W/ WILE
Additional Math Textbook Solutions
Precalculus: Mathematics for Calculus - 6th Edition
Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)
Calculus & Its Applications (14th Edition)
Calculus and Its Applications (11th Edition)
- Suppose that over a certain region of space the electrical potential V is given by the following equation. V(x, y, z) = 2x² – 3xy + xyz (a) Find the rate of change of the potential at P(6, 6, 5) in the direction of the vector v = i +j- k. (b) In which direction does V change most rapidly at P? (c) What is the maximum rate of change at P?arrow_forwardBrazilian soccer star Marta has a penalty kick in the quarter-final match. She kicks the soccer ball from ground level with the (x, y)-coordinates (76, 21) on the soccer field shown in the figure and with initial velocity vo = 8i - 4j+23k ft/s. Assume an acceleration of 32 ft/s² due to gravity and that the goal net has a height of 8 ft and a total width of 24 ft. 105 ft 1 105 ft r₁ = rj = rk = 165 ft Determine the position function that gives the position of the ball t seconds after it is hit. (Use symbolic notation and fractions where needed.) r(t) = ri(t)i + rj(t)j + rk(t)k Incorrect 81+76 -41+21 ↓ 23r+1672² 165 ft 12 12arrow_forwardBrazilian soccer star Marta has a penalty kick in the quarter-final match. She kicks the soccer ball from ground level with the (x, y)-coordinates (76, 21) on the soccer field shown in the figure and with initial velocity vo = 8i - 4j+23k ft/s. Assume an acceleration of 32 ft/s² due to gravity and that the goal net has a height of 8 ft and a total width of 24 ft. 105 ft 105 ft ri = rj = 165 ft rk = e 165 ft Determine the position function that gives the position of the ball t seconds after it is hit. (Use symbolic notation and fractions where needed.) r(t) = r(t)i + r(t)j +rk(t)k 12 12 Xarrow_forward
- A seasoned parachutist went for a skydiving trip where he performed freefall before deploying the parachute. According to Newton's Second Law of Motion, there are two forcës acting on the body of the parachutist, the forces of gravity (F,) and drag force due to air resistance (Fa) as shown in Figure 1. Fa = -cv ITM EUTM FUTM * UTM TM Fg= -mg x(t) UTM UT UTM /IM LTM UTM UTM TUIM UTM F UT GROUND Figure 1: Force acting on body of free-fall where x(t) is the position of the parachutist from the ground at given time, t is the time of fall calculated from the start of jump, m is the parachutist's mass, g is the gravitational acceleration, v is the velocity of the fall and c is the drag coefficient. The equation for the velocity and the position is given by the equations below: EUTM PUT v(t) = mg -et/m – 1) (Eq. 1.1) x(t) = x(0) – Where x(0) = 3200 m, m = 79.8 kg, g = 9.81m/s² and c = 6.6 kg/s. It was established that the critical position to deploy the parachutes is at 762 m from the ground…arrow_forward+25y²,0, 10- through the surface 3 Find the outward flux of F = =1.arrow_forwardA sodium ion (Na+) moves in the xy-plane with a speed of 2.90 ✕ 103 m/s. If a constant magnetic field is directed along the z-axis with a magnitude of 3.25 ✕ 10−5 T, find the magnitude of the magnetic force acting on the ion and the magnitude of the ion's acceleration. HINT (a) the magnitude (in N) of the magnetic force acting on the ion N (b) the magnitude (in m/s2) of the ion's acceleration m/s2arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning