Concept explainers
What is the difference between scoring in the 90th percentile on a test and scoring 90% correct on a test? Discuss this question carefully, giving examples to illustrate.
To write: The difference between scoring in the 90th percentile on a test and scoring 90% correct on a test.
Explanation of Solution
Consider an exam of 100 marks and the person scored 90 marks in the exam.
Therefore, the person has 90 percentage.
From the percentage is easy to know that the person is passed or failed.
Now for example:
Consider that 100 people appears for an exam and one person says that his percentile is 90 it means the candidate has done better than the other 89% or 90% of the appeared students in the exam. The rest 8% or 9% of the appeared students in the exam have scored better than the person.
The percentile concept is not easy to know that the person is passed or failed.
Therefore, percentage is different from thepercentile.
Want to see more full solutions like this?
Chapter 15 Solutions
Mathematics For Elementary Teachers With Activities
Additional Math Textbook Solutions
A First Course in Probability (10th Edition)
Pathways To Math Literacy (looseleaf)
Precalculus
Finite Mathematics for Business, Economics, Life Sciences and Social Sciences
College Algebra (7th Edition)
Calculus: Early Transcendentals (2nd Edition)
- Go to page 82 for the geometry problem. Use the formula for the area of a triangle to compute the area given the base and height. Link: [https://drive.google.com/file/d/1RQ2OZK-LSxp RyejKEMg 1t2q15dbpVLCS/view? usp=sharing] Provide a step-by-step solution.arrow_forwardRefer to page 79 of the shared document for the algebra problem. Use basic algebraic rules to simplify the given expression. Link: [https://drive.google.com/file/d/1RQ2OZK-LSxp RyejKEMg1t2q15dbpVLCS/view? usp=sharing] Provide all steps clearly.arrow_forward#7 Using implicit differentiation, find the equation of the tangent line to the given curve at the given point: a) 3x2y2-3y-17=5x+14 at (1,-3) b) y2-7xy+x-2x=9 at (0,3)arrow_forward
- Please calculate the shaded areaarrow_forwardAn investigator analyzed the leading digits from 797 checks issued by seven suspect companies. The frequencies were found to be 0, 19, 2, 50, 361, 309, 10, 22, and 24, and those digits correspond to the leading digits of 1, 2, 3, 4, 5, 6, 7, 8, and 9, respectively. If the observed frequencies are substantially different from the frequencies expected with Benford's law shown below, the check amounts appear to result from fraud. Use a 0.10 significance level to test for goodness-of-fit with Benford's law. Does it appear that the checks are the result of fraud? Leading Digit Actual Frequency Benford's Law: Distribution of Leading Digits 1 2 3 4 5 6 7 8 9 0 19 2 50 361 309 10 22 24 30.1% 17.6% 12.5% 9.7% 7.9% 6.7% 5.8% 5.1% 4.6% Determine the null and alternative hypotheses. Ho The leading digits are from a population that conforms to Benford's law. H₁: At least one leading digit has a frequency that does not conform to Benford's law. Calculate the test statistic, x². x² = (Round to three…arrow_forward3. Solve the Heat Equation with Initial and Boundary Conditions Turn to page 71 for the heat equation problem. Solve the partial differential equation using Fourier series or another suitable method, given the initial and boundary conditions. Link: [https://drive.google.com/file/d/1RQ2OZK-LSxpRyejKEMg1t2q15dbpVLCS/view? usp=sharing] Provide all derivations and intermediate steps.arrow_forward
- Name: Tay Jones Level Two Date: Algebra 3 Unit 3: Functions and Equations Practice Assessment Class: #7-OneNote 1. The function f(x) = x² is transformed in the following functions. List the vertex for each function, circle whether the function opens up or down, and why. All three parts must be correct to receive Level 2 points. You can receive points for a, b, and c. a) g(x) = -2(x+5)² Vertex: Opens Up Opens Down Why? ais negative -2 Vertex: b) g(x) = (x + 2)² - 3 c) g(x) = -4(x + 2)² + 2 Opens Up Opens Down Vertex: Opens Up Opens Down Why? 4 Ca is negative) Why? his positive 2. The graph of the function f(x) is shown below. Find the domain, range, and end behavior. Then list the values of x for which the function values are increasing and decreasing. f(x) Domain: End Behavior: As x → ∞o, f(x) -> -6 As x, f(x) -> Range: Where is it Increasing? (002] Where is it Decreasing? (1,00)arrow_forwardFor the distribution drawn here, identify the mean, median, and mode. Question content area bottom Part 1 A. Aequalsmode, Bequalsmedian, Cequalsmean B. Aequalsmode, Bequalsmean, Cequalsmedian C. Aequalsmedian, Bequalsmode, Cequalsmean D. Aequalsmean, Bequalsmode, Cequalsmedianarrow_forwardQ3: Define the linear functional J: H₁(2) R by ¡(v) = a(v, v) - L(v) Л Let u be the unique weak solution to a(u,v) = L(v) in H(2) and suppose that a(...) is a symmetric bilinear form on H(2) prove that 1- u is minimizer. 2- u is unique. 3- The minimizer J(u) can be rewritten under 1(u) = u Au-ub, algebraic form 1 2 Where A, b are repictively the stiffence matrix and the load vector Q4: A) Answer 1- show that the solution to -Au = f in A, u = 0 on a satisfies the stability Vullfll and show that ||V(u u)||||||2 - ||vu||2 2- Prove that Where lu-ul Chuz - !ull = a(u, u) = Vu. Vu dx + fu. uds B) Consider the bilinea forta Л a(u, v) = (Au, Av) (Vu, Vv + (Vu, v) + (u,v) Show that a(u, v) continues and V- elliptic on H(2)arrow_forward
- 2. Classify the Stability of Fixed Points in a Dynamical System The dynamical system problem is located on page 60 of the file. Identify the fixed points and classify their stability using linearization and eigenvalues. Link: [https://drive.google.com/file/d/1RQ2OZk-LSxpRyejKEMg1t2q15dbpVLCS/view? usp=sharing] Provide a detailed explanation of your analysis.arrow_forwardEvaluate the Z-Transform of the Sequence The Z-transform problem is provided on page 70. Compute the Z-transform of the given sequence and determine the region of convergence. Link: [https://drive.google.com/file/d/1RQ2OZK-LSxpRyejKEMg1t2q15dbpVLCS/view? usp=sharing] Show all steps and provide detailed reasoning.arrow_forward7. Apply Green's Theorem to Evaluate the Line Integral Check page 55 for the Green's theorem problem. Use Green's theorem to convert a line integral into a double integral and compute the result. Link: [https://drive.google.com/file/d/1RQ2OZK-LSxp RyejKEMg1t2q15dbpVLCS/view? usp=sharing] Provide a detailed explanation and calculation.arrow_forward
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt