Evaluating a Line Integral In Exercises 19-22, evaluate the line integral along the given path. ∫ C 3 ( x − y ) d s C : r ( t ) = t i + ( 2 − t ) j 0 ≤ t ≤ 1
Evaluating a Line Integral In Exercises 19-22, evaluate the line integral along the given path. ∫ C 3 ( x − y ) d s C : r ( t ) = t i + ( 2 − t ) j 0 ≤ t ≤ 1
Solution Summary: The author explains how to calculate the line integral displaystyle undersetCint3(x-y)ds along the path.
Evaluating a Line Integral In Exercises 19-22, evaluate the line integral along the given path.
∫
C
3
(
x
−
y
)
d
s
C
:
r
(
t
)
=
t
i
+
(
2
−
t
)
j
0
≤
t
≤
1
With differentiation, one of the major concepts of calculus. Integration involves the calculation of an integral, which is useful to find many quantities such as areas, volumes, and displacement.
Application of Green's theorem
Assume that u and u are continuously differentiable functions. Using Green's theorem,
prove that
JS
D
Ur
Vy
dA=
u dv,
where D is some domain enclosed by a simple closed curve C with positive orientation.
Application of Green's theorem
Assume that u and v are continuously differentiable
functions. Using Green's theorem, prove that
SS'S
D
Ux
Vx
|u₁|dA= udv,
C
Wy
Vy
where D is some domain enclosed by a simple closed curve
C with positive orientation.
Use Green's Theorem to evaluate the line integral
Chapter 15 Solutions
Calculus: Early Transcendental Functions (MindTap Course List)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY