
Concept explainers
Knowing that the disk has a constant angular velocity of 15 rad/s clockwise, determine the angular velocity of bar BD and the velocity of collar D when (a) θ = 0, (b) θ = 90°, (c) θ = 180°.
Fig. P15.57 and P15.58
(a)

Find the angular velocity of the bar BD and velocity of the collar D when
Answer to Problem 15.57P
The the angular velocity of the bar BD and velocity of the collar D when
Explanation of Solution
Given information:
The constant angular velocity of the disk is
The distance AB is
Calculation:
Show the disk as shown in Figure 1.
Refer to Figure 1.
Calculate the velocity at B using the relation:
Substitute
Consider that
Show the velocity
Calculate the value of angle
Consider bar BD.
Show the velocity diagram as shown in Figure 2.
Refer to Figure 2.
Show the relation between the velocity
Calculate the velocity of point D with respect to B using the relation:
Substitute
Calculate the angular velocity of bar BD using the relation:
Substitute
Thus, the angular velocity of bar BD is
Calculate the velocity of the collar
Substitute
Thus, the velocity of the collar D is
(b)

Find the angular velocity of the bar BD and velocity of the collar D when
Answer to Problem 15.57P
The angular velocity of the bar BD and velocity of the collar D are
Explanation of Solution
Calculation:
Refer to Part (a).
Show the disk as shown in Figure 3.
Refer Figure 3.
Calculate the velocity at B using the relation:
Substitute
Consider
Show the velocity
Calculate the value of angle
Consider bar BD.
Show the relation between the velocity
Equate the horizontal component of Equation (1).
Equate the vertical component of Equation (1).
Substitute 0 for
Thus, the velocity of the collar is
Calculate the angular velocity of bar BD using the relation:
Substitute
Thus, the angular velocity of bar BD is
(c)

Find the angular velocity of the bar BD and velocity of the collar D when
Answer to Problem 15.57P
The angular velocity of the bar BD and velocity of the collar D when
Explanation of Solution
Given information:
The constant angular velocity of the disk is
The distance AB is
Calculation:
Show the disk as shown in Figure 4.
Refer Figure 4.
Calculate the velocity at B using the relation:
Substitute
Consider
Show the velocity
Calculate the value of angle
Consider bar BD.
Show the velocity diagram as shown in Figure 5.
Refer Figure 5.
Show the relation between the velocity
Calculate the velocity of point D with respect to B using the relation:
Substitute
Calculate the angular velocity of bar BD using the relation:
Substitute
Thus, the angular velocity of bar BD is
Calculate the velocity of the collar
Substitute
Thus, the velocity of the collar D is
Want to see more full solutions like this?
Chapter 15 Solutions
VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS
- hand-written solutions only, please. correct answers upvoted!arrow_forward! Required information Consider a flat-plate solar collector placed horizontally on the flat roof of a house. The collector is 1.3 m wide and 2.8 m long, and the average temperature of the exposed surface of the collector is 42°C. The properties of air at 1 atm and the film temperature are k=0.02551 W/m-°C, v = 1.562 × 10-5 m²/s, Pr = 0.7286, and ẞ= 0.003356 K-1 Determine the rate of heat loss from the collector by natural convection during a calm day when the ambient air temperature is 8°C. The rate of heat loss from the collector by natural convection is W.arrow_forwardhand-written solutions only, please. correct answers upvoted!arrow_forward
- 6.76 A wind turbine is operating in a 12 m/s wind that has a den- sity of 1.2 kg/m³. The diameter of the turbine silhouette is 4 m. The constant-pressure (atmospheric) streamline has a diameter of 3 m upstream of the windmill and 4.5 m downstream. Assume that the velocity distributions are uniform and the air is incom- pressible. Determine the force on the wind turbine. m P = Patm 4 Vz 4m 4 m Fx. Problem 6.76arrow_forwardFor the position shown in the figure the spring is unstretched. The spring constant k, is designed such that after the system is released from rest, the speed of the mass is zero just as the 0.6 slug mass touches the floor. Find the spring constant, k and the maximum speed of block A and the location (distance above floor) where this occurs.arrow_forward||! Sign in MMB241 - Tutorial L9.pd X PDF MMB241 - Tutorial L10.pX DE MMB241 - Tutorial L11.p x PDF Lecture W12 - Work and X File C:/Users/KHULEKANI/Desktop/mmb241/MMB241%20-%20Tutorial%20L11.pdf PDE Lecture W11 - Power and X Draw Alla | Ask Copilot ++ 3 of 3 | D 6. If the 50-kg load A is hoisted by motor M so that the load has a constant velocity of 1.5 m/s, determine the power input to the motor, which operates at an efficiency € = 0.8. 1.5 m/s 2 7. The sports car has a mass of 2.3 Mg, and while it is traveling at 28 m/s the driver causes it to accelerate at 5m/s². If the drag resistance on the car due to the wind is FD= 0.3v²N, where v is the velocity in m/s, determine the power supplied to the engine at this instant. The engine has a running efficiency of P = 0.68. 8. If the jet on the dragster supplies a constant thrust of T-20 kN, determine the power generated by the jet as a function of time. Neglect drag and rolling resistance, and the loss of fuel. The dragster has a mass of 1…arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





