Concept explainers
(a)
Find the velocity and acceleration of point B just before the power is turned off.
(a)
Answer to Problem 15.19P
The velocity and acceleration of point B just before the power is turned off are
Explanation of Solution
Given information:
The initial speed
The radius (r) of the wheel is
The time taken (t) by the wheel and the chain coast to come to rest is
Consider the motion as uniformly decelerated motion.
Calculation:
Show the position of point A and B as shown in Figure 1.
Calculate the velocity of the point B just before the power is turned off using the relation:
Substitute
Thus, the velocity of the point B just before the power is turned off is
Calculate the uniform angular acceleration
The value of angular velocity
Substitute 0 for
Consider just before power is turned off.
The angular acceleration
Consider the normal and tangential component of the acceleration at point B are denoted by
Calculate the tangential component of acceleration of the point B using the relation:
Substitute
Calculate the normal component of acceleration of the point B using the relation:
Substitute
Neglect the effect of tangential acceleration as it is small.
Thus, the acceleration of point B just before the power is turned off is
(b)
Find the velocity and acceleration of point B just after 2.5 s.
(b)
Answer to Problem 15.19P
The velocity and acceleration of point B just after 2.5 s are
Explanation of Solution
Given information:
Calculation:
Refer Part (a).
Calculate the uniform angular velocity
The value of angular velocity
Substitute
Consider the time
Calculate the velocity of the point B using the relation:
Substitute
Thus, the velocity of point B just after 2.5 s is
Show the components of acceleration as shown in Figure 2.
Refer Figure 2.
Consider the normal and tangential component of the acceleration at point B are denoted by
Calculate the tangential component of acceleration of the point B using the relation:
Substitute
Calculate the normal component of acceleration of the point B using the relation:
Substitute
Calculate the angle
Neglect the effect of tangential acceleration as it is small.
Thus, the acceleration of point B just after 2.5 s is
Want to see more full solutions like this?
Chapter 15 Solutions
VECTOR MECHANICS FOR ENGINEERS W/CON >B
- Can you solve it analytically using laplace transforms and with Matlab code as well please. Thank You.arrow_forwardQ11. Determine the magnitude of the reaction force at C. 1.5 m a) 4 KN D b) 6.5 kN c) 8 kN d) e) 11.3 KN 20 kN -1.5 m- C 4 kN -1.5 m B Mechanical engineering, No Chatgpt.arrow_forwardplease help with this practice problem(not a graded assignment, this is a practice exam), and please explain how to use sohcahtoaarrow_forward
- Solve this problem and show all of the workarrow_forwardSolve this problem and show all of the workarrow_forwardaversity of Baoyion aculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023, st Course, 1st Attempt Stage: 3rd Subject: Heat Transfer I Date: 2023\01\23- Monday Time: 3 Hours Q4: A thick slab of copper initially at a uniform temperature of 20°C is suddenly exposed to radiation at one surface such that the net heat flux is maintained at a constant value of 3×105 W/m². Using the explicit finite-difference techniques with a space increment of Ax = = 75 mm, determine the temperature at the irradiated surface and at an interior point that is 150 mm from the surface after 2 min have elapsed. Q5: (12.5 M) A) A steel bar 2.5 cm square and 7.5 cm long is initially at a temperature of 250°C. It is immersed in a tank of oil maintained at 30°C. The heat-transfer coefficient is 570 W/m². C. Calculate the temperature in the center of the bar after 3 min. B) Air at 90°C and atmospheric pressure flows over a horizontal flat plate at 60 m/s. The plate is 60 cm square and is maintained at a…arrow_forward
- University of Baby on Faculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023. 1 Course, 1" Attempt Stage 3 Subject Heat Transfer I Date: 2023 01 23- Monday Time: 3 Hours Notes: Q1: • • Answer four questions only Use Troles and Appendices A) A flat wall is exposed to an environmental temperature of 38°C. The wall is covered with a layer of insulation 2.5 cm thick whose thermal conductivity is 1.4 W/m. C, and the temperature of the wall on the inside of the insulation is 315°C. The wall loses heat to the environment by convection. Compute the value of the convection heat-transfer coefficient that must be maintained on the outer surface of the insulation to ensure that the outer-surface temperature does not exceed 41°C. B) A vertical square plate, 30 cm on a side, is maintained at 50°C and exposed to room air at 20°C. The surface emissivity is 0.8. Calculate the total heat lost by both sides of the plate. (12.5 M) Q2: An aluminum fin 1.5 mm thick is placed on a circular tube…arrow_forwardSolve using graphical method and analytical method, only expert should solvearrow_forwardSolve this and show all of the workarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY