Let L ( x , y ) be the statement " x loves y ," where the domain for both x and y consists of all people in the world. Use quantifiers to express each of these statements. a) Everybody loves Jerry. b) Everybody loves somebody. c) There is somebody whom everybody loves. d) Nobody loves everybody. e) There is somebody whom Lydia does not love. t) There is somebody whom no one loves. g) There is exactly one person whom everybody loves. h) There are exactly two people whom Lynn loves. i) Everyone loves himself or herself. j) There is someone who loves no one besides himself or herself.
Let L ( x , y ) be the statement " x loves y ," where the domain for both x and y consists of all people in the world. Use quantifiers to express each of these statements. a) Everybody loves Jerry. b) Everybody loves somebody. c) There is somebody whom everybody loves. d) Nobody loves everybody. e) There is somebody whom Lydia does not love. t) There is somebody whom no one loves. g) There is exactly one person whom everybody loves. h) There are exactly two people whom Lynn loves. i) Everyone loves himself or herself. j) There is someone who loves no one besides himself or herself.
LetL(x,y) be the statement "xlovesy," where the domain for bothxandyconsists of all people in the world. Use quantifiers to express each of these statements.
a) Everybody loves Jerry.
b) Everybody loves somebody.
c) There is somebody whom everybody loves.
d) Nobody loves everybody.
e) There is somebody whom Lydia does not love.
t) There is somebody whom no one loves.
g) There is exactly one person whom everybody loves.
h) There are exactly two people whom Lynn loves.
i) Everyone loves himself or herself.
j) There is someone who loves no one besides himself or herself.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
MFCS unit-1 || Part:1 || JNTU || Well formed formula || propositional calculus || truth tables; Author: Learn with Smily;https://www.youtube.com/watch?v=XV15Q4mCcHc;License: Standard YouTube License, CC-BY